1,068 research outputs found
Efficiently Clustering Very Large Attributed Graphs
Attributed graphs model real networks by enriching their nodes with
attributes accounting for properties. Several techniques have been proposed for
partitioning these graphs into clusters that are homogeneous with respect to
both semantic attributes and to the structure of the graph. However, time and
space complexities of state of the art algorithms limit their scalability to
medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a
fast and scalable algorithm for partitioning large attributed graphs. The
approach is robust, being compatible both with categorical and with
quantitative attributes, and it is tailorable, allowing the user to weight the
semantic and topological components. Further, the approach does not require the
user to guess in advance the number of clusters. SToC relies on well known
approximation techniques such as bottom-k sketches, traditional graph-theoretic
concepts, and a new perspective on the composition of heterogeneous distance
measures. Experimental results demonstrate its ability to efficiently compute
high-quality partitions of large scale attributed graphs.Comment: This work has been published in ASONAM 2017. This version includes an
appendix with validation of our attribute model and distance function,
omitted in the converence version for lack of space. Please refer to the
published versio
Relaxation kinetics in two-dimensional structures
We have studied the approach to equilibrium of islands and pores in two
dimensions. The two-regime scenario observed when islands evolve according to a
set of particular rules, namely relaxation by steps at low temperature and
smooth at high temperature, is generalized to a wide class of kinetic models
and the two kinds of structures. Scaling laws for equilibration times are
analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl
Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1
The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1
Guidelines for initiation of anti-tumour necrosis factor therapy in rheumatoid arthritis: similarities and differences across Europe.
Contains fulltext :
80544.pdf (publisher's version ) (Closed access
Meaningful engagement of patients and families in a complex trial of advance care planning in primary care
Engagement of Patient and Family Advisors (PFAs) is increasingly recommended as best practice in research. During the design and conduct of a large trial of advance care planning (ACP) in primary care, we expanded on the funder’s (Patient-Centered Outcomes Research Institute®) requirement for an engagement plan and sought to develop an innovative approach to fostering and sustaining meaningful engagement of PFAs throughout all phases of the trial. Structures were developed that integrated PFAs into planning and provided the foundation for their ongoing participation. A continuous quality improvement approach became the framework for ongoing engagement. This involved setting goals; collecting data through surveys, interviews, and observations; and using data to inform revisions to the engagement approach. We also tracked PFA activities and ideas and documented how they impacted the trial. This article summarizes our experience and describes the challenges we faced and how we addressed them. We also outline key lessons learned about encouraging participation; approaches to preparation and coaching; fostering equity across PFAs and other roles in the trial team; creating a range of opportunities that match PFA skills, preferences, and expectations; the importance of regular feedback; and the need for training of all trial staff. Our experience demonstrates that successful and impactful engagement is possible but requires consistent commitment and intentional dedication of sufficient resources.
Experience Framework
This article is associated with the Patient, Family & Community Engagement lens of The Beryl Institute Experience Framework (https://theberylinstitute.org/experience-framework/). Access other PXJ articles related to this lens. Access other resources related to this lens
The contamination of the surface of Vesta by impacts and the delivery of the dark material
The Dawn spacecraft observed the presence of dark material, which in turn
proved to be associated with OH and H-rich material, on the surface of Vesta.
The source of this dark material has been identified with the low albedo
asteroids, but it is still a matter of debate whether the delivery of the dark
material is associated with a few large impact events, to micrometeorites or to
the continuous, secular flux of impactors on Vesta. The continuous flux
scenario predicts that a significant fraction of the exogenous material
accreted by Vesta should be due to non-dark impactors likely analogous to
ordinary chondrites, which instead represent only a minor contaminant in the
HED meteorites. We explored the continuous flux scenario and its implications
for the composition of the vestan regolith, taking advantage of the data from
the Dawn mission and the HED meteorites. We used our model to show that the
stochastic events scenario and the micrometeoritic flux scenario are natural
consequences of the continuous flux scenario. We then used the model to
estimate the amounts of dark and hydroxylate materials delivered on Vesta since
the LHB and we showed how our results match well with the values estimated by
the Dawn mission. We used our model to assess the amount of Fe and siderophile
elements that the continuous flux of impactors would mix in the vestan
regolith: concerning the siderophile elements, we focused our attention on the
role of Ni. The results are in agreement with the data available on the Fe and
Ni content of the HED meteorites and can be used as a reference frame in future
studies of the data from the Dawn mission and of the HED meteorites. Our model
cannot yet provide an answer to the fate of the missing non-carbonaceous
contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the
journal ICARUS, "Dark and Bright Materials on Vesta" special issu
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Assessing the number of users who are excluded by domestic heating controls
This is the pre-print version of the Article. This Article is also referred to as: "Assessing the 'Design Exclusion' of Heating Controls at a Low-Cost, Low-Carbon Housing Development". - Copyright @ 2011 Taylor & FrancisSpace heating accounts for almost 60% of the energy delivered to housing which in turn accounts for nearly 27% of the total UK's carbon emissions. This study was conducted to investigate the influence of heating control design on the degree of ‘user exclusion’. This was calculated using the Design Exclusion Calculator, developed by the Engineering Design Centre at the University of Cambridge. To elucidate the capability requirements of the system, a detailed hierarchical task analysis was produced, due to the complexity of the overall task. The Exclusion Calculation found that the current design placed excessive demands upon the capabilities of at least 9.5% of the UK population over 16 years old, particularly in terms of ‘vision’, ‘thinking’ and ‘dexterity’ requirements. This increased to 20.7% for users over 60 years old. The method does not account for the level of numeracy and literacy and so the true exclusion may be higher. Usability testing was conducted to help validate the results which indicated that 66% of users at a low-carbon housing development could not programme their controls as desired. Therefore, more detailed analysis of the cognitive demands placed upon the users is required to understand where problems within the programming process occur. Further research focusing on this cognitive interaction will work towards a solution that may allow users to behave easily in a more sustainable manner
Changing shapes in the nanoworld
What are the mechanisms leading to the shape relaxation of three dimensional
crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the
usual theories of equilibration, via atomic surface diffusion driven by
curvature, are verified only at high temperatures. Below the roughening
temperature, the relaxation is much slower, kinetics being governed by the
nucleation of a critical germ on a facet. We show that the energy barrier for
this step linearly increases with the size of the crystallite, leading to an
exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
- …