133 research outputs found

    When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data.</p> <p>Results</p> <p>Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This <it>in silico </it>model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 <it>diabetes mellitus</it>.</p> <p>Conclusions</p> <p>The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases.</p

    Immunohistochemical study of the phenotypic change of the mesenchymal cells during portal tract maturation in normal and fibrous (ductal plate malformation) fetal liver

    Get PDF
    International audienceBACKGROUND: In adult liver, the mesenchymal cells, portal fibroblasts and vascular smooth muscle cells can transdifferentiate into myofibroblasts, and are involved in portal fibrosis. Differential expression of markers, such as alpha-smooth muscle actin (ASMA), h-caldesmon and cellular retinol-binding protein-1 allows their phenotypic discrimination. The aim of our study was to explore the phenotypic evolution of the mesenchymal cells during fetal development in normal liver and in liver with portal fibrosis secondary to ductal plate malformation in a series of Meckel-Gruber syndrome, autosomal recessive polycystic kidney disease and Ivemark's syndrome. RESULTS: At the early steps of the portal tract maturation, portal mesenchymal cells expressed only ASMA. During the maturation process, these cells were found condensed around the biliary and vascular structures. At the end of maturation process, only cells around vessels expressed ASMA and cells of the artery tunica media also expressed h-caldesmon. In contrast, ASMA positive cells persisted around the abnormal biliary ducts in fibrous livers. CONCLUSION: As in adult liver, there is a phenotypic heterogeneity of the mesenchymal cells during fetal liver development. During portal tract maturation, myofibroblastic cells disappear in normal development but persist in fibrosis following ductal plate malformation

    pISTil: a pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis

    Get PDF
    High-throughput screening of protein-protein interactions opens new systems biology perspectives for the comprehensive understanding of cell physiology in normal and pathological conditions. In this context, yeast two-hybrid system appears as a promising approach to efficiently reconstruct protein interaction networks at the proteome-wide scale. This protein interaction screening method generates a large amount of raw sequence data, i.e. the ISTs (Interaction Sequence Tags), which urgently need appropriate tools for their systematic and standardised analysis.Journal Articleinfo:eu-repo/semantics/publishe

    Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Flavivirus </it>encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle.</p> <p>Results</p> <p>We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation.</p> <p>Conclusions</p> <p>We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.</p

    Flt3(+) macrophage precursors commit sequentially to osteoclasts, dendritic cells and microglia

    Get PDF
    BACKGROUND: Macrophages, osteoclasts, dendritic cells, and microglia are highly specialized cells that belong to the mononuclear phagocyte system. Functional and phenotypic heterogeneity within the mononuclear phagocyte system may reveal differentiation plasticity of a common progenitor, but developmental pathways leading to such diversity are still unclear. RESULTS: Mouse bone marrow cells were expanded in vitro in the presence of Flt3-ligand (FL), yielding high numbers of non-adherent cells exhibiting immature monocyte characteristics. Cells expanded for 6 days, 8 days, or 11 days (day 6-FL, day 8-FL, and day 11-FL cells, respectively) exhibited constitutive potential towards macrophage differentiation. In contrast, they showed time-dependent potential towards osteoclast, dendritic, and microglia differentiation that was detected in day 6-, day 8-, and day 11-FL cells, in response to M-CSF and receptor activator of NFÎșB ligand (RANKL), granulocyte-macrophage colony stimulating-factor (GM-CSF) and tumor necrosis factor-α (TNFα), and glial cell-conditioned medium (GCCM), respectively. Analysis of cell proliferation using the vital dye CFSE revealed homogenous growth in FL-stimulated cultures of bone marrow cells, demonstrating that changes in differential potential did not result from sequential outgrowth of specific precursors. CONCLUSIONS: We propose that macrophages, osteoclasts, dendritic cells, and microglia may arise from expansion of common progenitors undergoing sequential differentiation commitment. This study also emphasizes differentiation plasticity within the mononuclear phagocyte system. Furthermore, selective massive cell production, as shown here, would greatly facilitate investigation of the clinical potential of dendritic cells and microglia

    High expression of antioxidant proteins in dendritic cells: possible implications in atherosclerosis

    Get PDF
    Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.Comment: cpyright: American Society of Biochemistry and Molecular Biolog

    PhEVER: a database for the global exploration of virus–host evolutionary relationships

    Get PDF
    Fast viral adaptation and the implication of this rapid evolution in the emergence of several new infectious diseases have turned this issue into a major challenge for various research domains. Indeed, viruses are involved in the development of a wide range of pathologies and understanding how viruses and host cells interact in the context of adaptation remains an open question. In order to provide insights into the complex interactions between viruses and their host organisms and namely in the acquisition of novel functions through exchanges of genetic material, we developed the PhEVER database. This database aims at providing accurate evolutionary and phylogenetic information to analyse the nature of virus–virus and virus–host lateral gene transfers. PhEVER (http://pbil.univ-lyon1.fr/databases/phever) is a unique database of homologous families both (i) between sequences from different viruses and (ii) between viral sequences and sequences from cellular organisms. PhEVER integrates extensive data from up-to-date completely sequenced genomes (2426 non-redundant viral genomes, 1007 non-redundant prokaryotic genomes, 43 eukaryotic genomes ranging from plants to vertebrates) and offers a clustering of proteins into homologous families containing at least one viral sequences, as well as alignments and phylogenies for each of these families. Public access to PhEVER is available through its webpage and through all dedicated ACNUC retrieval systems

    VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks

    Get PDF
    Infectious diseases caused by viral agents kill millions of people every year. The improvement of prevention and treatment of viral infections and their associated diseases remains one of the main public health challenges. Towards this goal, deciphering virus–host molecular interactions opens new perspectives to understand the biology of infection and for the design of new antiviral strategies. Indeed, modelling of an infection network between viral and cellular proteins will provide a conceptual and analytic framework to efficiently formulate new biological hypothesis at the proteome scale and to rationalize drug discovery. Therefore, we present the first release of VirHostNet (Virus–Host Network), a public knowledge base specialized in the management and analysis of integrated virus–virus, virus–host and host–host interaction networks coupled to their functional annotations. VirHostNet integrates an extensive and original literature-curated dataset of virus–virus and virus–host interactions (2671 non-redundant interactions) representing more than 180 distinct viral species and one of the largest human interactome (10 672 proteins and 68 252 non-redundant interactions) reconstructed from publicly available data. The VirHostNet Web interface provides appropriate tools that allow efficient query and visualization of this infected cellular network. Public access to the VirHostNet knowledge-based system is available at http://pbildb1.univ-lyon1.fr/virhostnet
    • 

    corecore