392 research outputs found

    Stratified Slope-Waste Deposits in the Esino River Basin, Umbria-Marche Apennines, Central Italy

    Get PDF

    The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the Late Triassic change from orogenic-like to anorogenic magmatism

    Get PDF
    We present the first complete petrological, geochemical and geochronological characterization of the oldest lamprophyric rocks in Italy, which crop out around Predazzo (Dolomitic Area), with the aim of deciphering their relationship with Triassic magmatic events across the whole of the Southern Alps. Their Mg# of between 37 and 70, together with their trace element contents, suggests that fractional crystallization was the main process responsible for their differentiation, together with small-scale mixing, as evidenced by some complex amphibole textures. Moreover, the occurrence of primary carbonate ocelli suggests an intimate association between the alkaline lamprophyric magmas and a carbonatitic melt. 40Ar/39Ar data show that the lamprophyres were emplaced at 219·22 ± 0·73 Ma (2σ; full systematic uncertainties), around 20 Myr after the high-K calc-alkaline to shoshonitic, short-lived, Ladinian (237–238 Ma) magmatic event of the Dolomitic Area. Their trace element and Sr–Nd isotopic signatures (87Sr/86Sri = 0·7033–0·7040; 143Nd/144Ndi = 0·51260–0·51265) are probably related to a garnet–amphibole-bearing lithosphere interacting with an asthenospheric component, significantly more depleted than the mantle source of the high-K calc-alkaline to shoshonitic magmas. These features suggest that the Predazzo lamprophyres belong to the same alkaline–carbonatitic magmatic event that intruded the mantle beneath the Southern Alps (e.g. Finero peridotite) between 190 and 225 Ma. In this scenario, the Predazzo lamprophyres cannot be considered as a late-stage pulse of the orogenic-like Ladinian magmatism of the Dolomitic Area, but most probably represent a petrological bridge to the opening of the Alpine Tethys

    Relatively oxidized conditions for diamond formation at Udachnaya (Siberia)

    Get PDF
    Thanks to the physical strength of diamonds and their relatively unreactive chemical nature, their mineral inclusions may remain exceptionally preserved from alteration processes and chemical exchanges with surrounding minerals, fluids and/or melts following diamond formation. Cr-bearing spinels are relatively common inclusions found in peridotitic diamonds and important oxybarometers providing information about the oxygen fugacity (fO2) of their source mantle rocks. Here, we investigated a magnesiochromite-olivine touching pair in a diamond from the Udachnaya kimberlite (Siberia) by in situ single-crystal X-ray diffraction and energy-domain synchrotron Mossbauer spectroscopy, aiming to constrain the physical-chemical conditions of diamond formation and to explore the redox state of this portion of the Siberian craton when the diamond was formed. The P-T-fO(2) entrapment conditions of the inclusion pair, determined by thermo- and oxybarometric analyses, are similar to 5.7(0.4) GPa and similar to 1015(50) ? (although entrapment at higher T and re-equilibration during subsequent mantle storage are also possible) and fO(2) near the enstatite-magnesite-olivine-diamond (EMOD) buffer. The determined fO(2) is similar to, or slightly more oxidized than, those of xenoliths from Udachnaya, but whilst the xenoliths last equilibrated with the surrounding mantle just prior to their entrainment in the kimberlite at similar to 360 Ma, the last equilibration of the inclusion pair is much older, occurring at 3.5-3.1, similar to 2 or similar to 1.8 Ga before final encapsulation in its host diamond. Hence, the similarity between xenoliths and inclusion fO(2) values indicates that the modern redox state of this portion of the Siberian lithosphere was likely attained relatively early after its formation and may have persisted for billions of years after diamond formation, at least at the local scale. Moreover, the oxygen fugacity determination for the inclusion pair provides direct evidence of diamond formation near the EMOD buffer and is consistent with recent models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds

    U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS

    Full text link
    The regional contribution to the geo-neutrino signal at Gran Sasso National Laboratory (LNGS) was determined based on a detailed geological, geochemical and geophysical study of the region. U and Th abundances of more than 50 samples representative of the main lithotypes belonging to the Mesozoic and Cenozoic sedimentary cover were analyzed. Sedimentary rocks were grouped into four main "Reservoirs" based on similar paleogeographic conditions and mineralogy. Basement rocks do not outcrop in the area. Thus U and Th in the Upper and Lower Crust of Valsugana and Ivrea-Verbano areas were analyzed. Based on geological and geophysical properties, relative abundances of the various reservoirs were calculated and used to obtain the weighted U and Th abundances for each of the three geological layers (Sedimentary Cover, Upper and Lower Crust). Using the available seismic profile as well as the stratigraphic records from a number of exploration wells, a 3D modelling was developed over an area of 2^{\circ}x2^{\circ} down to the Moho depth, for a total volume of about 1.2x10^6 km^3. This model allowed us to determine the volume of the various geological layers and eventually integrate the Th and U contents of the whole crust beneath LNGS. On this base the local contribution to the geo-neutrino flux (S) was calculated and added to the contribution given by the rest of the world, yielding a Refined Reference Model prediction for the geo-neutrino signal in the Borexino detector at LNGS: S(U) = (28.7 \pm 3.9) TNU and S(Th) = (7.5 \pm 1.0) TNU. An excess over the total flux of about 4 TNU was previously obtained by Mantovani et al. (2004) who calculated, based on general worldwide assumptions, a signal of 40.5 TNU. The considerable thickness of the sedimentary rocks, almost predominantly represented by U- and Th- poor carbonatic rocks in the area near LNGS, is responsible for this difference.Comment: 45 pages, 5 figures, 12 tables; accepted for publication in GC

    The Variscan subduction inheritance in the Southern Alps Sub-Continental Lithospheric Mantle: clues from the Middle Triassic shoshonitic magmatism of the Dolomites (NE Italy)

    Get PDF
    Although often speculated, the link between the Middle Triassic shoshonitic magmatism at the NE margin of the Adria plate and the subduction-related metasomatism of the Southern Alps Sub-Continental Lithospheric Mantle (SCLM) has never been constrained. In this paper, a detailed geochemical and petrological characterization of the lavas, dykes and ultramafic cumulates belonging to the shoshonitic magmatic event that shaped the Dolomites (Southern Alps) was used to model the composition and evolution of the underlying SCLM in the time comprised between the Variscan subduction and the opening of the Alpine Tethys. Geochemical models and numerical simulations enabled us to define that 5–7% partial melting of an amphibole + phlogopite-bearing spinel lherzolite, similar to the Finero phlogopite peridotite, can account for the composition of the primitive Mid-Triassic SiO2-saturated to -undersaturated melts with shoshonitic affinity (87Sr/86Sri = 0.7032–0.7058; 143Nd/144Ndi = 0.51219–0.51235; Mg # ~ 70; ~1.1 wt% H2O). By taking into account the H2O content documented in mineral phases from the Finero phlogopite peridotite, it is suggested that the Mid-Triassic SCLM source was able to preserve a significant enrichment and volatile content (600–800 ppm H2O) for more than 50 Ma, i.e. since the slab-related metasomatism connected to the Variscan subduction. The partial melting of a Finero-like SCLM represents the exhaustion of the subduction-related signature in the Southern Alps lithosphere that predated the Late Triassic-Early Jurassic asthenospheric upwelling related to the opening of the Alpine Tethys

    Towards a map of the Upper Pleistocene loess of the Po Plain Loess Basin (Northern Italy)

    Get PDF
    Upper Pleistocene (MIS 4-2) loess sequences occur in most of continental Europe and in Northern Italy along the Po Plain Loess Basin. Loess is distributed along the flanks of the Po Plain and was deposited on glacial deposits, fluvial terraces, uplifted isolated hills, karst plateaus, slopes and basins of secondary valleys. Loess bodies are generally tiny and affected by pedogenesis, being locally slightly reworked by slope processes and bioturbation. Notwithstanding, loess in the Po Plain is an important archive of paleoenviron-mental record and its mapping provides new insights in paleoenvironmental and palaeoseismic reconstructions of Northern Italy
    • …
    corecore