1,426 research outputs found

    Graphs Obtained From Collections of Blocks

    Get PDF
    Given a collection of dd-dimensional rectangular solids called blocks, no two of which sharing interior points, construct a block graph by adding a vertex for each block and an edge if the faces of the two corresponding blocks intersect nontrivially. It is known that if d3d \geq 3, such block graphs can have arbitrarily large chromatic number. We prove that the chromatic number can be bounded with only a mild restriction on the sizes of the blocks. We also show that block graphs of block configurations arising from partitions of dd-dimensional hypercubes into sub-hypercubes are at least dd-connected. Bounds on the diameter and the hamiltonicity of such block graphs are also discussed

    Determining the shape of defects in non-absorbing inhomogeneous media from far-field measurements

    Get PDF
    International audienceWe consider non-absorbing inhomogeneous media represented by some refraction index. We have developed a method to reconstruct, from far-field measurements, the shape of the areas where the actual index differs from a reference index. Following the principle of the Factorization Method, we present a fast reconstruction algorithm relying on far field measurements and near field values, easily computed from the reference index. Our reconstruction result is illustrated by several numerical test cases

    Improving numerical reasoning capabilities of inductive logic programming systems

    Get PDF
    Inductive Logic Programming (ILP) systems have been largely applied to classification problems with a considerable success. The use of ILP systems in problems requiring numerical reasoning capabilities has been far less successful. Current systems have very limited numerical reasoning capabilities, which limits the range of domains where the ILP paradigm may be applied. This paper proposes improvements in numerical reasoning capabilities of ILP systems. It proposes the use of statistical-based techniques like Model Validation and Model Selection to improve noise handling and it introduces a new search stopping criterium based on the PAG method to evaluate learning performance. We have found these extensions essential to improve on results mer statistical-based algorithms for time series forecasting used in the empirical evaluation study

    Faster Approximate String Matching for Short Patterns

    Full text link
    We study the classical approximate string matching problem, that is, given strings PP and QQ and an error threshold kk, find all ending positions of substrings of QQ whose edit distance to PP is at most kk. Let PP and QQ have lengths mm and nn, respectively. On a standard unit-cost word RAM with word size wlognw \geq \log n we present an algorithm using time O(nkmin(log2mlogn,log2mlogww)+n) O(nk \cdot \min(\frac{\log^2 m}{\log n},\frac{\log^2 m\log w}{w}) + n) When PP is short, namely, m=2o(logn)m = 2^{o(\sqrt{\log n})} or m=2o(w/logw)m = 2^{o(\sqrt{w/\log w})} this improves the previously best known time bounds for the problem. The result is achieved using a novel implementation of the Landau-Vishkin algorithm based on tabulation and word-level parallelism.Comment: To appear in Theory of Computing System

    Inverting the Sachs-Wolfe Formula: an Inverse Problem Arising in Early-Universe Cosmology

    Get PDF
    The (ordinary) Sachs-Wolfe effect relates primordial matter perturbations to the temperature variations δT/T\delta T/T in the cosmic microwave background radiation; δT/T\delta T/T can be observed in all directions around us. A standard but idealised model of this effect leads to an infinite set of moment-like equations: the integral of P(k)j2(ky)P(k) j_\ell^2(ky) with respect to k (0<k<0<k<\infty) is equal to a given constant, CC_\ell, for =0,1,2,...\ell=0,1,2,.... Here, P is the power spectrum of the primordial density variations, jj_\ell is a spherical Bessel function and y is a positive constant. It is shown how to solve these equations exactly for ~P(k)P(k). The same solution can be recovered, in principle, if the first ~m equations are discarded. Comparisons with classical moment problems (where j2(ky)j_\ell^2(ky) is replaced by kk^\ell) are made.Comment: In Press Inverse Problems 1999, 15 pages, 0 figures, Late

    Forage Systems to Optimize Agronomic and Economic Performance in Organic Dairy Systems

    Get PDF
    Organic dairy production in the USA is growing, but most forage systems research focuses on conventional production practices. As a result, organic dairy producers have limited science-based information to assist with farm and livestock management. The objective of this project was to use a multi-faceted approach to determine the ideal species mixtures for organic dairy production as well as document forage quality, forage yield, soil characteristics, milk production and milk quality during the grazing season. The forages studied ranged from a single species monoculture to a four species mixture of warm and cool season grasses and legumes. Nine distinct forage systems were seeded into small plots at the University of Tennessee and University of Kentucky research farms using organic practices. These plots were monitored for three years for yield, quality, species composition, and soil characteristics. The four best performing forage systems were planted in small paddocks on organic dairy farms in Tennessee and Kentucky to evaluate forage yield, forage quality, seasonality of production, and suitability for on-farm milk production. The superior forage system was established on a 4 ha paddock and compared the existing forage system used by each of the dairy farms. These larger paddocks allowed continued measurements of forage yield and quality, as well as measurements of milk production, milk quality, and grazing behaviour of the animals. The information from this project is currently being incorporated into a total farm management system for organic dairy producers in the Southeastern USA

    S-wave Meson-Meson Scattering from Unitarized U(3) Chiral Lagrangians

    Get PDF
    An investigation of the s-wave channels in meson-meson scattering is performed within a U(3) chiral unitary approach. Our calculations are based on a chiral effective Lagrangian which includes the eta' as an explicit degree of freedom and incorporates important features of the underlying QCD Lagrangian such as the axial U(1) anomaly. We employ a coupled channel Bethe-Salpeter equation to generate poles from composed states of two pseudoscalar mesons. Our results are compared with experimental phase shifts up to 1.5 GeV and effects of the eta' within this scheme are discussed.Comment: 18 pages, 6 figure

    Mathematical practice, crowdsourcing, and social machines

    Full text link
    The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. Mathematical practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question answering system {\it mathoverflow} contains around 40,000 mathematical conversations, and {\it polymath} collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of "soft" aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a "social machine", a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent Computer Mathematics, CICM 2013, July 2013 Bath, U

    Assessing the perceptions of a biostatistics and epidemiology module: Views of Year 2 medical students from a Malaysian university. A cross-sectional survey

    Get PDF
    Background In the era of evidence based medicine, biostatistics and epidemiology are considered as the main elements aiding the health professional to design a research study, understand the literature, and make decisions about patient care. The aim of the study is to explore students' perception about this subject because it plays an important role in determining educational outcome. Methods Data were collected from a self-administered questionnaire distributed among 164 Year 2 medical students. The 5-point Likert scale anchored by Strongly disagree = 1 and Strongly agree = 5 included 36 questions in four domains designed to assess the perception of a biostatistics and epidemiology module amongst students. Results 138 students with ages ranging from 20 to 24 years (Mean = 20.7; SD = 0.62) returned their responses to the questionnaire. This was a response rate of 84.14%. Of the 138 students, 80.7% realized the relevance of the subject to real health issues at the end of the module, while 89.8% believed the module focused on interpretation more than calculation. More than three quarters (78.1%) agreed that lack of practicing exercises was the cause for declining interest in the subject, while only 26.1% believed that lectures were not interesting. Another three quarters (75.4%) believed that there were too many lectures for one day of teaching activities, while 84.6% recommended practical sessions for designing research and data collection. Conclusions This study found that students perceived the relevance of biostatistics and epidemiology to real health issues. The major cause of poor interest in the subject was attributed to the short duration of the course, lack of practicing exercises, and the need for practical data collection sessions. Emphasis should be given to early introduction of projects for data collection and analysis
    corecore