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Abstract. Inductive Logic Programming (ILP) systems have been largely
applied to classification problems with a considerable success. The use of
ILP systems in problems requiring numerical reasoning capabilities has
been far less successful. Current systems have very limited numerical
reasoning capabilities, which limits the range of domains where the ILP
paradigm may be applied.
This paper proposes improvements in numerical reasoning capabilities
of ILP systems. It proposes the use of statistical-based techniques like
Model Validation and Model Selection to improve noise handling and it
introduces a new search stopping criterium inspired in the PAC learning
framework.
We have found these extensions essential to improve on results over
statistical-based algorithms for time series forecasting used in the em-
pirical evaluation study.

1 Introduction

Inductive Logic Programming (ILP) [1] has achieved considerable success in do-
mains like biochemistry [2], language processing [3], environment monitoring [4].
The success of those applications are mainly due to the intelligibility of the
models induced. Those models are expressed in the powerful language of first
order clausal logic. In the domains just mentioned, the background knowledge
is mainly of a relational nature. Theoretically there is no impediment of using
whatever knowledge is useful for the induction of a theory. For some applications
it would be quite useful to include as background knowledge methods and algo-
rithms of a numerical nature. Such an ILP system would be able to harmoniously
combine relations with “numerical methods” in the same model. A proper ap-
proach to deal with numerical domains would therefore extend the applicability
of ILP systems. It would also pave the way for more sophisticated applications,
like discovering new time series model structures.

Current ILP approaches [5] to numerical domains usually carry out a search
through the model (hypothesis) space looking for a minimal value of a cost
function like the Root Mean Square Error (RMSE). Systems like TILDE [6] are
of that kind. One problem with the minimisation of RMSE in noisy domains
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is that the models tend to be brittle. The error is small when covering a small
number of examples. The end result is a large set of clauses to cover the complete
set of examples. This is a drawback on the intelligibility of ILP induced models.
This aspect is also an obstacle to the induction of a numerical theory, since we
end up with small locally fitted sub-models, that may not correspond to the
overall structure of the underlying process that generated data.

In this paper we propose improvements on the numerical reasoning capabili-
ties of ILP systems by adopting statistical-based noise handling techniques such
as: (i) model validation and; (ii) model selection.

We also propose a new stopping criterion inspired on the PAC [7] framework.
The rest of the paper is organised as follows. Section 2 identifies the steps of

a basic ILP algorithm that are subject to improvements proposed in this paper.
The proposals for Model Validation are discussed in Section 3. In Section 4
we propose the the stopping criterion. The proposals for Model Selection are
discussed in Section 5. Section 6 presents the experimental findings. The related
work is discussed in Section 7. Finally, in Section 8 we draw the conclusions.

2 Search Improvements

In ILP, the search procedure is usually an iterative greedy set-covering algorithm
that finds the best clause on each iteration and removes the covered examples.
Each hypothesis generated during the search is evaluated to determine their
quality. A widely used approach in classification tasks is to score a hypothesis
by measuring its coverage. That is, the number of examples it explaines. In
numerical domains it is common to use the RMSE or Mean Absolute Error
(MAE) as a score measure. Algorithm 1 presents an overview of the procedure.

Algorithm 1 Basic cycle of a greedy set-covering ILP algorithm
1: repeat
2: Initialize K
3: repeat
4: hi ← synthesize an hypothesis
5: accept an hypothesis (Model Validation)
6: if Stopping Criterion satisfied then
7: K ← K − 1
8: Update best hypothesis (Model Selection)
9: end if

10: until K = 0 ∨ hi = ∅
11: Remove explained examples
12: until “All” examples explained

We propose an improvement to step 5 where an hypothesis is checked if it
is a satisfactory approximation of the underlying process that generated data.
We propose the use of statistical tests in that model validation step. Step 8 is



improved avoiding the overfitting problem, which is manifest in the fragmented
structure of the induced theories, using a model selection criterium. Our proposal
for step 6 is inspired on the PAC [7] framework.

We use the terms hypothesis, model and theory with the following meaning in
this paper. An hypothesis (clause) is a conjecture after a specific observation and
before any empirical evaluation has been performed. A model is an hypothesis
that has at least limited validity for predicting new observations. A model is
an hypothesis that has passed the model validation tests. A Theory is a set of
hypotheses that have been confirmed through empirical evaluation.

3 Model Validation

In most applications, the true nature of the model is unknown, therefore, it
is of fundamental importance to assess the goodness-of-fit of each conjectured
hypothesis. This is performed in a step of the induction process called Model
Validation. Model Validation allows the system to check if the hypothesis is
indeed a satisfactory model of the data. This step is common both in Machine
Learning and Statistical Inference.

There are various ways of checking if a model is satisfactory. The most com-
mon approach is to examine the residuals, defined as follows.

Definition 1 (Hypothesis Residuals). The residuals from an induced hy-
pothesis hj are the differences between the responses observed at each combina-
tion values of the explanatory variables and the corresponding prediction of the
response computed using the induced hypothesis. Mathematically, the definition of
the residual zi for the ith observation in the data set is written, zi = yi−hj(−→xi),
where yi denotes the ith response in the data set and −→xi represents the list of
explanatory variables at the corresponding values found in the ith observation
in the data set. Therefore, residuals are the random process formed from the
differences between the observed and predicted values of a variable.

As a consequence of the Wold’s theorem the behavior of the residuals may
be used to check the adequacy of the fitted model.

Theorem 1 (Wold’s Theorem). Any real-valued stationary process may be
decomposed into two different parts. The first is totally deterministic. The second
totally stochastic. The stochastic part of the process may be written as a sequence
of serially uncorrelated random variables z with zero mean and variance σ2. The
stationarity condition imply σ <∞, thus z is a White Noise (WN) process:

z ∼WN(0, σ) (1)

According to condition (1) of the Wold’s theorem, if the fitted model belongs
to the set of “correct” functional classes, the residuals should behave like a white
noise process with zero mean and constant variance.

Hypotheses whose residuals do not comply with condition (1) may be rejected
using specific statistical tests that check randomness. The Ljung-Box test, de-
fined below, is one of such tests.



Definition 2 (Ljung-Box Test). The Ljung-Box test is based on the autocor-
relation function. However, instead of testing randomness at each distinct lag, it
tests the ”overall” randomness based on a number of lags. The null hypothesis is
the data are random. The test statistic is: QLB = n(n + 2)

∑h
j=1

r(j)2

(n−j) . Where
n is the sample size, r(j) is the autocorrelation at lag j, and h is the number of
lags being tested. The Significance Level is α. The hypothesis of randomness is
rejected if: QLB > χ2

((1−α); h) where χ2
((1−α); h) is the percent point function of

the chi-square distribution.

The null hypothesis of the Ljung-Box test is a strict white noise process.
Thus, residuals are independent and identically distributed (i.i.d.). According
to the definition of statistical independence, namely condition (2), residuals are
incompressible. Muggleton and Srinivasan [8], have also proposed to check noise
incompressibility for evaluating hypothesis significance but in the context of
classification problems.

Other statistical tests may be incorporated to check our assumptions re-
garding error structure, like tests for normality. The use of residuals for model
assessment is a very general method which apply to many situations.

Definition 3 (Statistical Independence). Let x1, x2, . . . , xi be a sequence of
random variables. The variables xi are statistically (mutually) independent if:

E [g1(xi)g2(xj)]− E [g1(xi)] E [g2(xj)] = 0 ∀i 6=j , ∀g1,g2 (2)

Notice that this is much stronger condition then uncorrelation: E [XiXj ] −
E [Xi] E [Xj ] = 0 ∀i 6=j . Condition (2) means that there is no function that
captures the relationship between these random variables.

The formulation presented in this paper considers that only noise is statis-
tically independent, which is an assumption based on the Wold’s theorem and
verifiable by the Ljung-Box Test.

4 Stopping Criterium

The stopping criterium derived is inspired on the PAC [7] method to evaluate
learning: P (|z| > ε) < δ. The stopping criterium stops the search whenever the
probability of the error be greater than the accuracy (ε) is less than the confi-
dence interval (δ). Different degrees of “goodness” will correspond to different
values of ε and δ.

In this section we propose to calculate the bound, δ, for any unknown dis-
tribution. Theorem 2, proves the existence of the bound, δ, for a single clause
(hypothesis) and provides a procedure to calculate the error probability for a
given accuracy level. Corollary 1, generalises the bound on the error probability
to a multi-clausal theory. Both theorems rely on the convergence in probability
mode, defined as follows.

Definition 4 (Convergence in probability). Let x1, x2, . . . , xn be a sequence
of random variables. We say that xn converges in probability to another random
variable x, i.e. xn

P−→ x, if for any ε > 0, P (|xn − x| > ε)→ 0 as n→∞



Theorem 2 (Bounding Error Probability of an Hypothesis). Let z be
the residuals from the hypothesis hi. Assume z is independent and identically
distributed (i.i.d.) with distribution variance σ2. Then the probability of the error
being greater then ε is bounded by:

P (|z| > ε | hi) < δ, δ =
σ2

ε2
(3)

Proof: Let the residuals z1, z2, . . . , zn be a sequence of i.i.d. random variables
each with finite mean µ and σ. if z̄ = (z1 + . . . + zn)/n is the average of
z1, z2, . . . , zn, then, it follows from the week law of large numbers [9] that:

z̄
P−→ µ (4)

Let the sample variance be Sn = 1
n

∑n
j=1(zj − z̄)2 = 1

n

∑n
j=1 z2

j − z̄2 , where
z̄ is the sample average. It follows from the Slutski’s lemma [9] that:

Sn
P−→ σ (5)

Assuming the residuals z of the hypothesis hi pass the null hypothesis of the
Ljung-Box test, then they will comply with a strict white noise process with zero
mean and finite variance, yielding thereby:

µ = 0, σ <∞ (6)

Following Conditions (4) and (5), each observation may be considered drawn
from the same ensemble distribution. Thus, the sample mean and variance of
the joint distribution converge to the ensemble mean and variance. Moreover,
condition (6) states that both values are finite and, therefore, for all ε > 0, the
Chebishev’s inequality bounds the probability of the residuals value, z, being
greater then ε to:

P (|z| > ε | hi) <
σ2

ε2
(7)

�

Corollary 1 (Bounding Error Probability of a Theory). Let H be a set
of hypothesis (clauses) that describes a given theory T . Assume:

P (|z| > ε | hi) < δ, ∀hi∈H (8)

then, for theory T , the probability of the error, z, being greater than ε, is also
bounded by P (|z| > ε) < δ.

We recall that just one clause is activated at each time thus all clauses of a
theory are mutually exclusive regarding example coverage, i.e.

hi ∩ hj = ∅ ∀i 6=j (9)



We also recall that the prior probability of hi, P (hi) may be estimated cal-
culating the frequency of hi on the training set and dividing it by the coverage
of the theory. Because the sum of the frequencies of all hypotheses is equal to
the theory coverage, then ∑

∀hi∈H

P (hi) = 1 (10)

Proof: Let conditions (9) and (10) hold, then it follows from the total probability
theorem that:

P (|z| > ε) =
∑
∀hi

∈H

P (|z| > ε | hi)P (hi). (11)

Let condition (8) hold, then we may substitute P (|z| > ε | hi) by δ in equation
(11), yielding thereby: P (|z| > ε) < δ

∑
∀hi∈H

P (hi). Since
∑
∀hi∈H

P (hi) = 1
and P (|z| > ε | hi) < δ, ∀hi∈H , then:

P (|z| > ε) < δ (12)

�

5 Model Selection

The evaluation of conjectured hypotheses is central to the search process in ILP.
Given a set of hypothesis of the underlying process that generated data, we
which to select the one that best approximates the “true” process. The process
of evaluating candidate hypothesis is termed model selection.

A simple approach to model selection is to select the hypothesis that gives
the most accurate description of data. For example, select the hypothesis that
minimises RMSE. However, model selection is disturbed by the presence of noise
in data, leading to the problem of over fitting. Thus, an hypothesis with larger
number of adjusted parameters has more flexibility to capture complex structures
in data but also to fit noise. Hence, any criterium for model selection should
establish a trade-off between descriptive accuracy and hypothesis complexity.

5.1 Hypothesis Complexity

Defining a theoretically well-justified measure of model complexity is a central
issue in model selection that is yet to be fully understood. In Machine Learning,
some authors have advanced their own definition of complexity. Dzerovski [10],
proposes a complexity measure based on the length of a grammar sentence in
the Lagramge system. Muggleton [11] proposes a complexity measure based on
the number of bits necessary to encode an hypothesis.

Both complexity measures are sensitive to the hypothesis functional form.
This is clear since both penalises each literal added. The functional form is not
a good approximation to measure the complexity of a real-valued hypothesis,
since any real-valued function can be accurately approximated using a single
function class. This follows directly from Approximation Theory. An example is
the Kolmogorov’s superposition theorems.



Theorem 3 (Kolmogorov superposition theorem). Any continuous mul-
tidimensional function f(x1, . . . , xm), can be represented as the sum of m + 1
functions. These functions are called universal functions because depend only on
the dimensionality m and not in the functional form of f .

Following theorem 3, the sum of universal functions is proportional to the
dimensionality m. This highlights the role of dimensionality on a definition of
hypothesis complexity. A few arguments on computational complexity and esti-
mation theory also support this claim. Since the machine learning algorithm is
given a finite dataset, models with fewer adjusted parameters will be easier to
optimise since they will generically have fewer misleading local minima in the
error surfaces associated with the estimation. They will be also less prone to the
curse of dimensionality. They will require less computational time to manipulate.
A model with fewer degrees of freedom generically will be less able to fit statis-
tical artifacts in small data sets and will therefore be less prone to the so-called
“generalisation error”. Finally, several authors (Akaike [12]; Efron [13]; Ye [14])
proposed measures of model complexity which in general depend on the number
of adjusted parameters. Consequentially, the adopted measure of complexity in
this work is the number of adjusted parameters to data.

5.2 Model Selection Criteria

There are several model selection criteria suitable for the adopted measure of
model complexity. Among these, we may find: (i) Akaike Information Criterium
(AIC) [12], defined as AIC = −2 ln(L) + 2k; (ii) Akaike Information Criterium
Corrected for small sample bias(AICC) [12], defined as AICC = −2 ln(L) +
2k n

n−k+1 ; (iii) Bayesian Information Criterium (BIC) [15], defined as BIC =
− ln(L)+ln(n)k and; (iv) the Minimum Description Length (MDL) [12], defined
as MDL = − ln(L) + k

2 ln(n) + (k
2 + 1) ln(k + 1).

The estimation of an hypothesis likelihood function, L, with k adjusted pa-
rameters, requires a considerable computational effort and the assumption of
prior distributions. In this context, the Gaussian distribution plays an important
role in the characterisation of the noise, fundamentally due the central limit the-
orem. Assuming error is i.i.d. drawn from a Gaussian distribution then, the like-
lihood of an hypothesis given the data [12] is: ln(L) = −n

2 (1+ ln(2π)+ ln(σ̂r
2)),

where σ̂2
r = 1

n

∑n
i=1 z2

i , and z are the residuals of the induced hypothesis.
Analytical model selection criteria like AIC and BIC are asymptotically

equivalent to leave-one-out and leave-v-out cross-validation [16]. However, they
have the advantage of being incorporated in the cost function.

When these hypotheses have different coverages, Box and Jenkins [17](pg.
201) suggests the normalisation of those criteria by the sample size. This ap-
proach has the advantage of indirectly biasing the search to favour hypothesis
with higher coverage, and consequentially, theories with less clauses.

Other authors presented similar work in this area. Zelezni [18] derives a
model selection criterium under similar assumptions that uses the Muggleton’s
complexity measure, which according to the adopted definition of complexity, is



unsuitable for our purposes. It also requires the calculation of the “generality”
function for each induced hypothesis. His formulation does not estimate the
modal value of the likelihood, so the final equation includes the usually unknown
nuisance parameter of the hypothesis, which somehow limits its practical use.

5.3 Choosing a Model Selection Criterium

The adopted model selection criteria have different characteristics, thus, it is
essential to clarify their application conditions to numerical problems in ILP.

The use of AIC is recommendable if the data generating function is not in any
of the candidate hypotheses and if the number of models of the same dimension
does not grow very fast in dimension, then the average squared error of the
selected model by AIC is asymptotically equivalent to the smallest possible one
offered by the candidate models [16]. Otherwise, AIC cannot be asymptotically
optimal, increasing model complexity as more data is supplied [15].

The use of BIC and other dimension consistent criteria like MDL is advisable
if the correct models are among the candidate hypothesis, then the probability
of selecting the true model by BIC approaches 1 as n→∞. Otherwise, BIC has
a bias for choosing oversimplified models [16].

6 Experimental Evaluation

This section presents empirical evidence for the proposals made in this paper. We
propose an experiment that illustrates the usage of an ILP system on scientific
discovery tasks. In that sense, this experiment has been inspired in Colton and
Muggleton [19] application of an ILP system to mathematical discovery. The
experiment consists of learning a model for time series prediction using an ILP
system. The model extends a previously existent one, by adding extra degrees
of freedom that will be estimated in run-time by the ILP system. Although
this experiment reports on learning multiple clause theories, it is related with
Zelezni’s [18] work because it also learns a numeric function.

6.1 Datasets

Canada’s Industrial Production Index [20]; USA Unemployment rate [21]; ECG
of a patient with sleep apnea [22] and; VBR Traffic of an MPEG video [23]. These
datasets consist of facts that relate time with an output variable. The time is
expressed in discrete intervals and the output is a real-valued variable. The mode
declaration for the head literal is of the form: timeseries(+Time,−Output).

6.2 Benchmark models

In this experiment we compared theories induced by the raw IndLog system
with the following models: IndLog with Model Validation and Model Selection
activated (IndLogMVS); Auto-Regressive Integrated Moving Average (ARIMA);



Threshold Auto-Regressive (TAR); Markov Switching Autoregressive (MSA);
Autoregressive model with multiple structural Changes (MSC); Self-Excited
Threshold Auto-Regressive (SETAR); Markov Switching regime dependent In-
tercepts Autoregressive parameters and (H)variances(MSIAH); Markov Switch-
ing regime dependent Means and (H)variances (MSMH); Bivariate Auto-Regressive
models (Bivariate AR) and; Radial Basis Functions Networks (RBFN)

All models are described in the papers referred in the datasets section. In all
experiments the statistics used to compare the models is the Root Mean Square
Error (RMSE). All time series models use forecasting lead time of one period.

6.3 Learning Task Description

The experiment’s goal is to learn a modified class of the TAR [24] model.

Definition 5 (TAR Model). The TAR model is a nonlinear time-series pro-
cess composed of linear AR(p) sub-models. Each amplitude switched AR process
is constructed for a specific amplitude subregion. The AR model to be used at
time n is determined by the amplitude x(n−D) where D denotes a time-delay.
The AR model for sub-region m is activated if the following constraint is true:
Rm < x(n − D) < Rm+1. The variable x is the time-series observed, m is the
index denoting the sub-region, Rm denotes the threshold amplitude of region m.

The main difference from the original TAR structure is that instead of a
single D value, we have one D for each sub-region.

The learning task consists of estimating: (i) the number of parameters p of
each AR sub-model; (ii) The time delay D of each sub-model and; (iii) The
thresholds that bound each subregion Rm and Rm+1. The induced clauses are
of the kind: timeseries(T,X)← inInterval(Rm, T,D, Rm+1), armodel(T, P,X).

6.4 Results Summary and Discussion

This section presents the results obtained for each dataset of Section 6.1. Those
datasets were studied in several papers, using different classes of models. Thus,
all time series datasets in table 1 have an AR model that may be used as a
reference across datasets. The recall number for the Unemployment, Production,
VBR Traffic, and ECG datasets are respectively: 100%, 96%, 94%, and 78%.

The ILP system consistently induced models with best forecasting perfor-
mance on all datasets studied. This allow us to conclude that the proposed
modifications to the basic ILP search process, makes an ILP system suited for
discovering new time series models.

7 Related Work

Other approaches to the task of learning numerical relationships may be found in
the ILP literature. FORS [25] integrates feature construction into linear regres-
sion modelling. The ILP system IndLog [26] presented mechanisms for coping



Table 1. Summary of results of the Relative RMSE of the ILP algorithm and other
benchmark models for the selected datasets

Model Unemployment Production VBR Traffic ECG

IndLogMV S 0.91 0.85 0.93 0.82
IndLog 1.11 1.04 0.96 0.93
AR 1.04 0.98 0.94 0.97
SARIMA 1.00 1.00 - -
MSA 1.19 - - -
MSC - 1.00 - -
MSMH - 0.98 - -
MSIAH - 1.20 - -
SETAR - 1.19 - -
TAR 1.00 - 1.00 -
RBFN - - - 1.00
Bivariate AR 1.20 - - -

Benchmark RMSE 1.59E-1 4.44E-3 12.93E3 4.53

with large number of examples that include noisy numerical data without nega-
tive examples and the capability to adjust model parameters at induction time.
Equation discovery systems like LAGRAMGE [27] allow the user to specify the
space of possible equations using a context-free grammar. TILDE [6] has the
capability of performing regression-like tasks.

8 Conclusions

In this paper we have proposed improvements in the numerical reasoning capa-
bilities of ILP systems. The improvements proposed are: model validation; model
selection criteria and; a stopping criterium.

Our proposals were incorporated in the IndLog [26] ILP system and evalu-
ated on time series modelling problems. The ILP results were better than other
statistics-based time series prediction methods. The ILP system discovered a new
switching model based on the possibility of varying the delay on the activation
rule of each sub-model of a TAR model.

The proposals made for model validation, model selection and for measuring
the learning performance can be generalised to other machine learning techniques
dealing with numerical reasoning.
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