91 research outputs found

    Corporate Social Responsibility Strategies of Spanish Listed Firms and Controlling Shareholders’ Representatives

    Get PDF
    This article aims at analyzing how controlling shareholders’ representatives on boards affect corporate social responsibility (CSR) strategies (disclosing CSR matters) in Spain, a context characterized by high ownership concentration, one-tier boards, little board independence, weak legal protection for investors, and the presence of large shareholders, especially institutional shareholders. Furthermore, among controlling shareholders’ representatives, we can distinguish between those appointed by insurance companies and banks and those appointed by mutual funds, investment funds, and pension funds. The effect of these categories of directors on CSR strategies is, therefore, also analyzed. Our findings suggest that controlling shareholders’ representatives have a positive effect on CSR strategies, as do directors appointed by investment funds, pension funds, and mutual funds, while directors appointed by banks and insurance companies have no impact on CSR strategies. This analysis offers new insights into the role played by certain types of directors on CSR strategies

    Business groups and corporate responsibility for the public good

    Get PDF
    This paper analyses the relationship between Business Groups as a distinct way of organizing economic activities and their relation to the public good. We first analyze the phenomenon of Business Groups and discuss some of their core features. Subsequently, the paper moves to analyzing the existing literature on Business Groups and Corporate Social Responsibility (CSR) as the most common label for the topic of this Special Issue. Subsequently, specific peculiarities of Business Groups in the context of CSR and their contribution to the public good are fleshed out. Based on this analysis, the paper delineates some implications for the field of CSR and the wider debate on the nature of the firm. We close with some perspectives for future research

    A model of feedback control for the charge-balanced suppression of epileptic seizures

    Get PDF
    Here we present several refinements to a model of feedback control for the suppression of epileptic seizures. We utilize a stochastic partial differential equation (SPDE) model of the human cortex. First, we verify the strong convergence of numerical solutions to this model, paying special attention to the sharp spatial changes that occur at electrode edges. This allows us to choose appropriate step sizes for our simulations; because the spatial step size must be small relative to the size of an electrode in order to resolve its electrical behavior, we are able to include a more detailed electrode profile in the simulation. Then, based on evidence that the mean soma potential is not the variable most closely related to the measurement of a cortical surface electrode, we develop a new model for this. The model is based on the currents flowing in the cortex and is used for a simulation of feedback control. The simulation utilizes a new control algorithm incorporating the total integral of the applied electrical potential. Not only does this succeed in suppressing the seizure-like oscillations, but it guarantees that the applied signal will be charge-balanced and therefore unlikely to cause cortical damage

    Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI

    Get PDF
    Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects

    Institutions for Effective Business-Government Collaboration: Micro Mechanisms and Macro Politics in Latin America

    Full text link
    • …
    corecore