121 research outputs found
Tropomodulin’s Actin-Binding Abilities Are Required to Modulate Dendrite Development
There are many unanswered questions about the roles of the actin pointed end capping and actin nucleation by tropomodulins (Tmod) in regulating neural morphology. Previous studies indicate that Tmod1 and Tmod2 regulate morphology of the dendritic arbor and spines. Tmod3, which is expressed in the brain, had only a minor influence on morphology. Although these studies established a defined role of Tmod in regulating dendritic and synaptic morphology, the mechanisms by which Tmods exert these effects are unknown. Here, we overexpressed a series of mutated forms of Tmod1 and Tmod2 with disrupted actin-binding sites in hippocampal neurons and found that Tmod1 and Tmod2 require both of their actin-binding sites to regulate dendritic morphology and dendritic spine shape. Proximity ligation assays (PLAs) indicate that these mutations impact the interaction of Tmod1 and Tmod2 with tropomyosins Tpm3.1 and Tpm3.2. This impact on Tmod/Tpm interaction may contribute to the morphological changes observed. Finally, we use molecular dynamics simulations (MDS) to characterize the structural changes, caused by mutations in the C-terminal helix of the leucine-rich repeat (LRR) domain of Tmod1 and Tmod2 alone and when bound onto actin monomers. Our results expand our understanding of how neurons utilize the different Tmod isoforms in development
A model of feedback control for the charge-balanced suppression of epileptic seizures
Here we present several refinements to a model of feedback control for the suppression of epileptic seizures. We utilize a stochastic partial differential equation (SPDE) model of the human cortex. First, we verify the strong convergence of numerical solutions to this model, paying special attention to the sharp spatial changes that occur at electrode edges. This allows us to choose appropriate step sizes for our simulations; because the spatial step size must be small relative to the size of an electrode in order to resolve its electrical behavior, we are able to include a more detailed electrode profile in the simulation. Then, based on evidence that the mean soma potential is not the variable most closely related to the measurement of a cortical surface electrode, we develop a new model for this. The model is based on the currents flowing in the cortex and is used for a simulation of feedback control. The simulation utilizes a new control algorithm incorporating the total integral of the applied electrical potential. Not only does this succeed in suppressing the seizure-like oscillations, but it guarantees that the applied signal will be charge-balanced and therefore unlikely to cause cortical damage
Recommended from our members
Recessive TMOD1 mutation causes childhood cardiomyopathy.
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy
Business groups and corporate responsibility for the public good
This paper analyses the relationship between Business Groups as a distinct way of organizing economic activities and their relation to the public good. We first analyze the phenomenon of Business Groups and discuss some of their core features. Subsequently, the paper moves to analyzing the existing literature on Business Groups and Corporate Social Responsibility (CSR) as the most common label for the topic of this Special Issue. Subsequently, specific peculiarities of Business Groups in the context of CSR and their contribution to the public good are fleshed out. Based on this analysis, the paper delineates some implications for the field of CSR and the wider debate on the nature of the firm. We close with some perspectives for future research
Corporate Social Responsibility Strategies of Spanish Listed Firms and Controlling Shareholders’ Representatives
This article aims at analyzing how controlling shareholders’ representatives on boards affect
corporate social responsibility (CSR) strategies (disclosing CSR matters) in Spain, a context
characterized by high ownership concentration, one-tier boards, little board independence, weak
legal protection for investors, and the presence of large shareholders, especially institutional
shareholders. Furthermore, among controlling shareholders’ representatives, we can distinguish
between those appointed by insurance companies and banks and those appointed by mutual funds,
investment funds, and pension funds. The effect of these categories of directors on CSR strategies
is, therefore, also analyzed. Our findings suggest that controlling shareholders’ representatives
have a positive effect on CSR strategies, as do directors appointed by investment funds, pension
funds, and mutual funds, while directors appointed by banks and insurance companies have no
impact on CSR strategies. This analysis offers new insights into the role played by certain types
of directors on CSR strategies
Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI
Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects
Recommended from our members
Organizational innovation in the multinational enterprise: internalization theory and business history
This article engages in a methodological experiment by using historical evidence to challenge a common misperception about internalization theory. The theory has often been criticized for maintaining that it assumes a hierarchically organized MNE based on knowledge flowing from the home country. This is not an accurate description of how global firms operate in recent decades, but this article shows it has never been true historically. Using longitudinal data on individual firms from the nineteenth century onwards, it reveals evidence of how entrepreneurs and firms with multinational activity faced with market imperfections changed the design of their headquarters and their organizational structures
- …