15,454 research outputs found

    Gravitational spectra from direct measurements

    Get PDF
    A simple rapid method is described for determining the spectrum of a surface field from harmonic analysis of direct measurements along great circle arcs. The method is shown to give excellent overall trends to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point-masses using (1) altimetric heights from a low orbiting spacecraft, (2) velocity residuals between a low and a high satellite in circular orbits, and (3) range-rate data between a station at infinity and a satellite in highly eccentric orbit. In particular, the smoothed spectrum of the Earth's gravitational field is determined to about degree 400(50 km half wavelength) from 1 D x 1 D gravimetry and the equivalent of 11 revolutions of Geos 3 and Skylab altimetry. This measurement shows there is about 46 cm of geoid height remaining in the field beyond degree 180

    Interplay between bending and stretching in carbon nanoribbons

    Full text link
    We investigate the bending properties of carbon nanoribbons by combining continuum elasticity theory and tight-binding atomistic simulations. First, we develop a complete analysis of a given bended configuration through continuum mechanics. Then, we provide by tight-binding calculations the value of the bending rigidity in good agreement with recent literature. We discuss the emergence of a stretching field induced by the full atomic-scale relaxation of the nanoribbon architecture. We further prove that such an in-plane strain field can be decomposed into a first contribution due to the actual bending of the sheet and a second one due to edge effects.Comment: 5 pages, 6 figure

    Enlightening the atomistic mechanisms driving self-diffusion of amorphous Si during annealing

    Get PDF
    We have analyzed the atomic rearrangements underlying self-diffusion in amorphous Si during annealing using tight-binding molecular dynamics simulations. Two types of amorphous samples with different structural features were used to analyze the influence of coordination defects. We have identified several types of atomic rearrangement mechanisms, and we have obtained an effective migration energy of around 1 eV. We found similar migration energies for both types of samples, but higher diffusivities in the one with a higher initial percentage of coordination defects.Comment: 9 pages, 4 figure

    Nanofriction behavior of cluster-assembled carbon films

    Get PDF
    We have characterized the frictional properties of nanostructured (ns) carbon films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed on the basis of a modified Amonton's law for friction, stating a linear dependence of friction on load plus an adhesive offset accounting for a finite friction force in the limit of null total applied load. Molecular Dynamics simulations of the interaction of the AFM tip with the nanostructured carbon confirm the validity of the friction model used for this system. Experimental results show that the friction coefficient is not influenced by the nanostructure of the films nor by the relative humidity. On the other hand the adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex
    • …
    corecore