We investigate the bending properties of carbon nanoribbons by combining
continuum elasticity theory and tight-binding atomistic simulations. First, we
develop a complete analysis of a given bended configuration through continuum
mechanics. Then, we provide by tight-binding calculations the value of the
bending rigidity in good agreement with recent literature. We discuss the
emergence of a stretching field induced by the full atomic-scale relaxation of
the nanoribbon architecture. We further prove that such an in-plane strain
field can be decomposed into a first contribution due to the actual bending of
the sheet and a second one due to edge effects.Comment: 5 pages, 6 figure