240 research outputs found
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass GeV and a constant splitting between
successive states keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to GeV and keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Recommended from our members
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC)
Recommended from our members
Planck intermediate results: LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium, the baryon density ω b , the matter density ω m , the angular size of the sound horizon the spectral index of the primordial power spectrum, n s , and A s e -2τ (where A s is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment 800, or splitting at a different multipole, yields similar results. We examined the 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in ΛCDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is, which, at fixed A s e -2τ , affects the > 800 temperature power spectrum solely through the associated change in A s and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at < 800 that leads to somewhat different best-fit parameters than come from the full range?" We find that if we discard the data at < 30, where there is a roughly 2σ downward fluctuation in power relative to the model that best fits the full range, the < 800 best-fit parameters shift significantly towards the < 2500 best-fit parameters. In contrast, including < 30, this previously noted "low-deficit" drives n s up and impacts parameters correlated with n s , such as ω m and H 0 . As expected, the < 30 data have a much greater impact on the < 800 best fit than on the < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-residuals and the deficit in low-power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between PlanckTT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the ΛCDM model
Planck 2015 results: I. Overview of products and scientific results
The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds
Planck 2015 results: XV. gravitational lensing
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model
BEYONDPLANCK
We present posterior sample-based cosmic microwave background (CMB) constraints from Planck LFI and WMAP observations as derived through global end-to-end Bayesian processing within the BeyondPlanck framework. We first used these samples to study correlations between CMB, foreground, and instrumental parameters. We identified a particularly strong degeneracy between CMB temperature fluctuations and free-free emission on intermediate angular scales (400 ≤ ∫ ≤ 600), mitigated through model reduction, masking, and resampling. We compared our posterior-based CMB results with previous Planck products and found a generally good agreement, however, with notably higher noise due to our exclusion of Planck HFI data.We found a best-fit CMB dipole amplitude of 3362:7 ± 1:4 μK, which is in excellent agreement with previous Planck results. The quoted dipole uncertainty is derived directly from the sampled posterior distribution and does not involve any ad hoc contributions for Planck instrumental systematic effects. Similarly, we find a temperature quadrupole amplitude of φTT 2 = 229 ± 97 μK2, which is in good agreement with previous results in terms of the amplitude, but the uncertainty is one order of magnitude greater than the naive diagonal Fisher uncertainty. Concurrently, we find less evidence of a possible alignment between the quadrupole and octopole than previously reported, due to a much larger scatter in the individual quadrupole coeffcients that is caused both by marginalizing over a more complete set of systematic effects – as well as by requiring a more conservative analysis mask to mitigate the free-free degeneracy. For higher multipoles, we find that the angular temperature power spectrum is generally in good agreement with both Planck and WMAP. At the same time, we note that this is the first time that the sample-based, asymptotically exact Blackwell-Rao estimator has been successfully established for multipoles up to ∫ ≤ 600. It now accounts for the majority of the cosmologically important information. Overall, this analysis demonstrates the unique capabilities of the Bayesian approach with respect to end-to-end systematic uncertainty propagation and we believe it can and should play an important role in the analysis of future CMB experiments. Cosmological parameter constraints are presented in a companion paper
BEYONDPLANCK
We discuss the treatment of bandpass and beam leakage corrections in the Bayesian BEYONDPLANCK cosmic microwave background (CMB) analysis pipeline as applied to the Planck LFI measurements. As a preparatory step, we first applied three corrections to the nominal LFI bandpass profiles, including the removal of a known systematic effect in the ground measuring equipment at 61 GHz, along with a smoothing of standing wave ripples and edge regularization. The main net impact of these modifications is an overall shift in the 70 GHz bandpass of +0.6 GHz. We argue that any analysis of LFI data products, either from Planck or BEYONDPLANCK, should use these new bandpasses. In addition, we fit a single free bandpass parameter for each radiometer of the form δiâ =â δ0+δi, where δ0 represents an absolute frequency shift per frequency band and δi is a relative shift per detector. The absolute correction is only fitted at 30 GHz, with a full Ï 2-based likelihood, resulting in a correction of δ30â =â 0.24±0.03â GHz. The relative corrections were fitted using a spurious map approach that is fundamentally similar to the method pioneered by the WMAP team, but excluding the introduction of many additional degrees of freedom. All the bandpass parameters were sampled using a standard Metropolis sampler within the main BEYONDPLANCK Gibbs chain and the bandpass uncertainties were thus propagated to all other data products in the analysis. In summary, we find that our bandpass model significantly reduces leakage effects. For beam leakage corrections, we adopted the official Planck LFI beam estimates without any additional degrees of freedom and we only marginalized over the underlying sky model. We note that this is the first time that leakage from beam mismatch has been included for Planck LFI maps
BEYONDPLANCK
We describe the correction procedure for Analog-to-Digital Converter (ADC) differential non-linearities (DNL) adopted in the Bayesian end-to-end BEYONDPLANCK analysis framework. This method is nearly identical to that developed for the official Planck Low Frequency Instrument (LFI) Data Processing Center (DPC) analysis, and relies on the binned rms noise profile of each detector data stream. However, rather than building the correction profile directly from the raw rms profile, we first fit a Gaussian to each significant ADC-induced rms decrement, and then derive the corresponding correction model from this smooth model. The main advantage of this approach is that only samples which are significantly affected by ADC DNLs are corrected, as opposed to the DPC approach in which the correction is applied to all samples, filtering out signals not associated with ADC DNLs. The new corrections are only applied to data for which there is a clear detection of the non-linearities, and for which they perform at least comparably with the DPC corrections. Out of a total of 88 LFI data streams (sky and reference load for each of the 44 detectors) we apply the new minimal ADC corrections in 25 cases, and maintain the DPC corrections in 8 cases. All these corrections are applied to 44 or 70 GHz channels, while, as in previous analyses, none of the 30 GHz ADCs show significant evidence of non-linearity. By comparing the BEYONDPLANCK and DPC ADC correction methods, we estimate that the residual ADC uncertainty is about two orders of magnitude below the total noise of both the 44 and 70 GHz channels, and their impact on current cosmological parameter estimation is small. However, we also show that non-idealities in the ADC corrections can generate sharp stripes in the final frequency maps, and these could be important for future joint analyses with the Planck High Frequency Instrument (HFI), Wilkinson Microwave Anisotropy Probe (WMAP), or other datasets. We therefore conclude that, although the existing corrections are adequate for LFI-based cosmological parameter analysis, further work on LFI ADC corrections is still warranted
BEYONDPLANCK
We present cosmological parameter constraints estimated using the Bayesian BeyondPlanck analysis framework. This method supports seamless end-to-end error propagation from raw time-ordered data onto final cosmological parameters. As a first demonstration of the method, we analyzed time-ordered Planck LFI observations, combined with selected external data (WMAP 33–61 GHz, Planck HFI DR4 353 and 857 GHz, and Haslam 408 MHz) in the form of pixelized maps that are used to break critical astrophysical degeneracies. Overall, all the results are generally in good agreement with previously reported values from Planck 2018 and WMAP, with the largest relative difference for any parameter amounting about 1φ when considering only temperature multipoles between 30 ≤ ∫ ≤ 600. In cases where there are differences, we note that the BeyondPlanck results are generally slightly closer to the high- ∫ HFI-dominated Planck 2018 results than previous analyses, suggesting slightly less tension between low and high multipoles. Using low- ∫ polarization information from LFI and WMAP, we find a best-fit value of φ = 0:066±0:013, which is higher than the low value of φ = 0:052 ± 0:008 derived from Planck 2018 and slightly lower than the value of 0:069 ± 0:011 derived from the joint analysis of offcial LFI and WMAP products. Most importantly, however, we find that the uncertainty derived in the BeyondPlanck processing is about 30% greater than when analyzing the offcial products, after taking into account the different sky coverage. We argue that this uncertainty is due to a marginalization over a more complete model of instrumental and astrophysical parameters, which results in more reliable and more rigorously defined uncertainties. We find that about 2000 Monte Carlo samples are required to achieve a robust convergence for a low-resolution cosmic microwave background (CMB) covariance matrix with 225 independent modes, and producing these samples takes about eight weeks on a modest computing cluster with 256 cores
- …
