15 research outputs found

    An Integrative Salt Marsh Conceptual Framework for Global Comparisons

    Get PDF
    Salt marshes occur globally across climatic and coastal settings, providing key linkages between terrestrial and marine ecosystems. However, salt marsh science lacks a unifying conceptual framework; consequently, historically well-studied locations have been used as normative benchmarks. To allow for more effective comparisons across the diversity of salt marshes, we developed an integrative salt marsh conceptual framework. We review ecosystem-relevant drivers from global to local spatial scales, integrate these multi-scale settings into a framework, and provide guidance on applying the framework using specific variables on 11 global examples. Overall, this framework allows for appropriate comparison of study sites by accounting for global, coastal, inter-, and intra-system spatial settings unique to each salt marsh. We anticipate that incorporating this framework into salt marsh science will provide a mechanism to critically evaluate research questions and a foundation for effective quantitative studies that deepen our understanding of salt marsh function across spatial scales

    Geographic Variation in Salt Marsh Structure and Function for Nekton: a Guide to Finding Commonality Across Multiple Scales

    Get PDF
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe

    An integrative salt marsh conceptual framework for global comparisons

    Get PDF
    Salt marshes occur globally across climatic and coastal settings, providing key linkages between terrestrial and marine ecosystems. However, salt marsh science lacks a unifying conceptual framework; consequently, historically well-studied locations have been used as normative benchmarks. To allow for more effective comparisons across the diversity of salt marshes, we developed an integrative salt marsh conceptual framework. We review ecosystem-relevant drivers from global to local spatial scales, integrate these multi-scale settings into a framework, and provide guidance on applying the framework using specific variables on 11 global examples. Overall, this framework allows for appropriate comparison of study sites by accounting for global, coastal, inter-, and intra-system spatial settings unique to each salt marsh. We anticipate that incorporating this framework into salt marsh science will provide a mechanism to critically evaluate research questions and a foundation for effective quantitative studies that deepen our understanding of salt marsh function across spatial scales

    Climate change implications for tidal marshes and food web linkages to estuarine and coastal nekton

    Get PDF
    Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future

    Governing Ecological Connectivity in Cross-Scale Dependent Systems.

    Get PDF
    Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries

    Four decades of climatic fluctuations and fish recruitment stability across a marine-freshwater gradient.

    No full text
    Investigating the effects of climatic variability on biological diversity, productivity, and stability is key to understanding possible futures for ecosystems under accelerating climate change. A critical question for estuarine ecosystems is, how does climatic variability influence juvenile recruitment of different fish species and life histories that use estuaries as nurseries? Here we examined spatiotemporal abundance trends and environmental responses of 18 fish species that frequently spend the juvenile stage rearing in the San Francisco Estuary, CA, USA. First, we constructed multivariate autoregressive state-space models using age-0 fish abundance, freshwater flow (flow), and sea surface temperature data (SST) collected over four decades. Next, we calculated coefficients of variation (CV) to assess portfolio effects (1) within and among species, life histories (anadromous, marine opportunist, or estuarine dependent), and the whole community; and (2) within and among regions of the estuary. We found that species abundances varied over space and time (increasing, decreasing, or dynamically stable); and in 83% of cases, in response to environmental conditions (wet/dry, cool/warm periods). Anadromous species responded strongly to flow in the upper estuary, marine opportunist species responded to flow and/or SST in the lower estuary, and estuarine dependent species had diverse responses across the estuary. Overall, the whole community when considered across the entire estuary had the lowest CV, and life histories and species provided strong biological insurance to the portfolio (2.4- to 3.5-fold increases in stability, respectively). Spatial insurance also increased stability, although to a lesser extent (up to 1.6-fold increases). Our study advances the notion that fish recruitment stability in estuaries is controlled by biocomplexity-life history diversity and spatiotemporal variation in the environment. However, intensified drought and marine heatwaves may increase the risk of multiple consecutive recruitment failures by synchronizing species dynamics and trajectories via Moran effects, potentially diminishing estuarine nursery function

    Disentangling abiotic and biotic controls of age‐0 Pacific herring population stability across the San Francisco Estuary

    No full text
    Abstract Pacific herring (Clupea pallasii) is an ecologically and commercially valuable forage fish in the North Pacific Ocean. However, knowledge gaps exist around the abiotic and biotic drivers behind its variable population dynamics—as well as on the ability of the species to show spatially structured trends that stabilize population portfolios in the face of environmental change. Here we examined how historical hydroclimatic variability in the San Francisco Estuary (California) has driven age‐0 Pacific herring population dynamics over 35 years. First, we used wavelet analyses to examine spatiotemporal variation and synchrony in the environment, focusing on two key variables: salinity and temperature. Next, we fitted multivariate autoregressive state‐space models to environmental and abundance time series to test for spatial structure and to parse out abiotic (salinity and temperature) from biotic influences (spawning and density dependence). Finally, we examined the stabilizing effects of spatially asynchronous population fluctuations (i.e., portfolio effects) across the estuary. Our results showed that temperature, but not salinity, fluctuated synchronously across regions on seasonal and decadal timescales. The top‐ranked model showed strong evidence of regional population structure and regional variation in population responses to the environment. As expected, age‐0 herring were generally associated with cooler, saltier conditions in spring. Density dependence was strong in all regions, suggesting that local factors influencing rearing conditions limited juvenile population growth across the estuary. Additionally, age‐0 abundance fluctuations were on average 15% more stable across the estuary than in individual regions, demonstrating that portfolio effects arising from population asynchrony have helped to stabilize recruitment across the estuary over the past four decades. We contend that ecosystem‐based fishery management strategies to restore eelgrass and tidal marsh rearing habitats could increase the carrying capacity of the estuary, further stabilizing the herring population and reducing the risk of fishery closures
    corecore