1,644 research outputs found

    An assessment of the performance of grip enhancing agents used in sports applications

    Get PDF
    The performances of four grip enhancing agents, powdered and liquid chalk, rosin and Venice turpentine, were assessed using a bespoke finger friction rig and compared against an agent-free finger. The effectiveness of these agents was measured in dry, damp and wet conditions, to simulate the different environments in which the agents are used. The tests were first done on a polished steel surface and then the powdered and liquid chalk and agent-free finger were tested on sandstone. The tests on the steel showed that in a dry condition, only the Venice turpentine significantly increased the coefficient of friction, compared to no application of agent, with the rosin and powdered chalk actually decreasing the coefficient of friction. It is thought that the reduction in the coefficient of friction is caused by the solid particles acting as a lubricant between the two surfaces. When the fingers were wet, only the granular powder-based agents increased the coefficient of friction. This is because the Venice turpentine cannot adhere well to a wet finger, and therefore is not as effective. When the surface is wet, there is very little difference between the agents due to the water separating the finger surface from the steel. The tests on the sandstone showed no real difference between the lubricants or the different conditions, except for the dry, chalk-free finger, which had a decreased coefficient of friction due to the lubricating properties of the sandstone particles. These results highlight that the use of grip enhancing agents should take into account the moisture in the contact, as in dry conditions, the grip may be optimum when there is no agent used. It also shows that in different sports, different grip enhancing agents should be used

    Space-time properties of the higher twist amplitudes

    Get PDF
    A consistent and intuitive description of the twist-4 corrections to the hadron structure functions is presented in a QCD-improved parton model using time-ordered perturbative theory, where the collinear singularities are naturally eliminated. We identify the special propagators with the backward propagators of partons in time order.Comment: 18 Pages, Latex, 8 Ps figures, To appear in Phys. Rev.

    Restoration of kTk_T factorization for low pTp_T hadron hadroproduction

    Full text link
    We discuss the applicability of the kTk_T factorization theorem to low-pTp_T hadron production in hadron-hadron collision in a simple toy model, which involves only scalar particles and gluons. It has been shown that the kTk_T factorization for high-pTp_T hadron hadroproduction is broken by soft gluons in the Glauber region, which are exchanged among a transverse-momentum-dependent (TMD) parton density and other subprocesses of the collision. We explain that the contour of a loop momentum can be deformed away from the Glauber region at low pTp_T, so the above residual infrared divergence is factorized by means of the standard eikonal approximation. The kTk_T factorization is then restored in the sense that a TMD parton density maintains its universality. Because the resultant Glauber factor is independent of hadron flavors, experimental constraints on its behavior are possible. The kTk_T factorization can also be restored for the transverse single-spin asymmetry in hadron-hadron collision at low pTp_T in a similar way, with the residual infrared divergence being factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ

    Duality properties of indicatrices of knots

    Full text link
    The bridge index and superbridge index of a knot are important invariants in knot theory. We define the bridge map of a knot conformation, which is closely related to these two invariants, and interpret it in terms of the tangent indicatrix of the knot conformation. Using the concepts of dual and derivative curves of spherical curves as introduced by Arnold, we show that the graph of the bridge map is the union of the binormal indicatrix, its antipodal curve, and some number of great circles. Similarly, we define the inflection map of a knot conformation, interpret it in terms of the binormal indicatrix, and express its graph in terms of the tangent indicatrix. This duality relationship is also studied for another dual pair of curves, the normal and Darboux indicatrices of a knot conformation. The analogous concepts are defined and results are derived for stick knots.Comment: 22 pages, 9 figure

    Joint Resummation for Higgs Production

    Full text link
    We study the application of the joint resummation formalism to Higgs production via gluon-gluon fusion at the LHC, defining inverse transforms by analytic continuation. We work at next-to-leading logarithmic accuracy. We find that at low Q_T the resummed Higgs Q_T distributions are comparable in the joint and pure-Q_T formalisms, with relatively small influence from threshold enhancement in this range. We find a modest (about ten percent) decrease in the inclusive cross section, relative to pure threshold resummation.Comment: 22 pages, LaTeX, 5 figures as eps file

    Recoil and Threshold Corrections in Short-distance Cross Sections

    Get PDF
    We identify and resum corrections associated with the kinematic recoil of the hard scattering against soft-gluon emission in single-particle inclusive cross sections. The method avoids double counting and conserves the flow of partonic energy. It reproduces threshold resummation for high-p_T single-particle cross sections, when recoil is neglected, and Q_T-resummation at low Q_T, when higher-order threshold logarithms are suppressed. We exhibit explicit resummed cross sections, accurate to next-to-leading logarithm, for electroweak annihilation and prompt photon inclusive cross sections.Comment: minor modifications of the text, some references added. 51 pages, LaTeX, 6 figures as eps file

    Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain

    Full text link
    We study the equilibrium properties of a lattice-gas model of an A+B→0A + B \to 0 catalytic reaction on a one-dimensional chain in contact with a reservoir for the particles. The particles of species AA and BB are in thermal contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may desorb from the lattice. If adsorbed AA and BB particles appear at neighboring lattice sites they instantaneously react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive analytically the expression of the pressure and present exact results for the mean densities of particles and for the compressibilities of the adsorbate as function of the chemical potentials of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.

    Gluon shadowing in the Glauber-Gribov model

    Get PDF
    New data from HERA experiment on (diffractive) deep inelastic scattering has been used to parameterize nucleon and Pomeron structure functions. Within the Gribov theory, the parameterizations were employed to calculate gluon shadowing for various heavy ions and compared our results with predictions from other models. Calculations for d+Au collisions at forward rapidities at ultra-relativistic energies have been made and are compared to RHIC data on the nuclear modification factor. Results for gluon shadowing are also confronted with recent data on the nuclear modification factor at s=17.3\sqrt{s} = 17.3 GeV at various values of the Feynman variable xFx_F, and the energy dependence of the effect is discussed.Comment: To appear in the proceedings of the Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions, Hot Quarks 2006. To be published in EPJ

    Nucleon Structure from Lattice QCD Using a Nearly Physical Pion Mass

    Get PDF
    We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.Comment: journal version; 15 pages, 6 figure
    • …
    corecore