2,690 research outputs found

    Indoor Air Quality Through the Lens of Outdoor Atmospheric Chemistry

    Get PDF
    Outdoor atmospheric chemistry and air quality have been the topic of research that intensified in earnest around the mid-20th century, while indoor air quality research has only been a key focus of chemical researchers over the last 30 years. Examining practices and approaches employed in the outdoor atmospheric chemistry research enterprise provides an additional viewpoint from which we can chart new paths to increase scientific understanding of indoor chemistry. This chapter explores our understanding of primary chemical sources, homogeneous and multiphase reactivity, gas-surface partitioning, and the coupling between the chemistry and dynamics of indoor air through the lens of outdoor atmospheric chemistry. The means to mitigate degraded air quality outdoors are heavily rooted in public policy actions, while the commercial sector mainly promulgates solutions for indoor air quality, making practical and actionable outcomes to research essential for prompt improvements to indoor environments. Indoor and outdoor environments have many important scientific distinctions, but a shared vision for healthy environments motivates both research communities in the same way

    Unintended Consequences of Air Cleaning Chemistry

    Get PDF
    Amplified interest in maintaining clean indoor air associated with the airborne transmission risks of SARS-CoV-2 have led to an expansion in the market for commercially available air cleaning systems. While the optimal way to mitigate indoor air pollutants or contaminants is to control (remove) the source, air cleaners are a tool for use when absolute source control is not possible. Interventions for indoor air quality management include physical removal of pollutants through ventilation or collection on filters and sorbent materials, along with chemically reactive processes that transform pollutants or seek to deactivate biological entities. This perspective intends to highlight the perhaps unintended consequences of various air cleaning approaches via indoor air chemistry. Introduction of new chemical agents or reactive processes can initiate complex chemistry that results in the release of reactive intermediates and/or byproducts into the indoor environment. Since air cleaning systems are often continuously running to maximize their effectiveness and most people spend a vast majority of their time indoors, human exposure to both primary and secondary products from air cleaners may represent significant exposure risk. This Perspective highlights the need for further study of chemically reactive air cleaning and disinfection methods before broader adoption

    Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival.

    Get PDF
    Mycobacterium tuberculosis has succeeded as a human pathogen for tens of thousands of years thanks to its ability to resist and adapt to the adverse conditions it encounters upon infection. Bacterial adaptation to stress is commonly viewed in the context of transcriptional regulation, with the implicit expectation that an initial transcriptomic response is tightly coupled to an ensuing proteomic response. However, after challenging M. tuberculosis with nitric oxide we found that the rapid transcriptional responses, detectable within minutes of nitric oxide exposure, typically took several hours to manifest on the protein level. Furthermore, early proteomic responses were dominated by the degradation of a set of proteins, specifically those containing damaged iron-sulphur clusters. Overall, our findings are consistent with transcriptional responses participating mostly in late-stage recovery rather than in generating an immediate resistance to nitric oxide stress, suggesting that survival of M. tuberculosis under acute stress is contingent on mechanisms other than transcriptional regulation. These findings provide a revised molecular understanding of an important human pathogen

    Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol

    Full text link
    After many field studies, the establishment of connections between marine microbiological processes, sea spray aerosol (SSA) composition, and cloud condensation nuclei (CCN) has remained an elusive challenge. In this study, we induced algae blooms to probe how complex changes in seawater composition impact the ability of nascent SSA to act as CCN, quantified by using the apparent hygroscopicity parameter (Îșapp). Throughout all blooms, Îșapp ranged between 0.7 and 1.4 (average 0.95 ± 0.15), consistent with laboratory investigations using algae‐produced organic matter, but differing from climate model parameterizations and in situ SSA generation studies. The size distribution of nascent SSA dictates that changes in Îșapp associated with biological processing induce less than 3% change in expected CCN concentrations for typical marine cloud supersaturations. The insignificant effect of hygroscopicity on CCN concentrations suggests that the SSA production flux and/or secondary aerosol chemistry may be more important factors linking ocean biogeochemistry and marine clouds.Key PointsChanges in seawater and sea spray composition did not strongly affect expected CCN concentrationsBlooms may impact clouds more strongly through changes in aerosol flux or secondary chemistryModel parameterizations likely overestimate changes in cloud nuclei due to primary marine organicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/1/grl54978_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/2/grl54978-sup-0001-supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134444/3/grl54978.pd

    Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer

    Get PDF
    The impact of aerosols on clouds is a well-studied, although still poorly constrained, part of the atmospheric system. New particle formation (NPF) is thought to contribute 40 %-80 % of the global cloud droplet number concentration, although it is extremely difficult to observe an air mass from NPF to cloud formation. NPF and growth occurs frequently in the Canadian Arctic summer atmosphere, although only a few studies have characterized the source and properties of these aerosols. This study presents cloud condensation nuclei (CCN) concentrations measured on board the CCGS Amundsen in the eastern Canadian Arctic Archipelago from 23 July to 23 August 2016 as part of the Network on Climate and Aerosols: Addressing Uncertainties in Remote Canadian Environments (NETCARE). The study was dominated by frequent ultrafine particle and/or growth events, and particles smaller than 100 nm dominated the size distribution for 92 % of the study period. Using kappa-Kohler theory and aerosol size distributions, the mean hygroscopicity parameter (kappa) calculated for the entire study was 0.12 (0.06-0.12, 25th-75th percentile), suggesting that the condensable vapours that led to particle growth were primarily slightly hygroscopic, which we infer to be organic. Based on past measurement and modelling studies from NETCARE and the Canadian Arctic, it seems likely that the source of these slightly hygroscopic, organic, vapours is the ocean. Examining specific growth events suggests that the mode diameter (D-max) had to exceed 40 nm before CCN concentrations at 0.99 % supersaturation (SS) started to increase, although a statistical analysis shows that CCN concentrations increased 13-274 cm(-3) during all ultrafine particle and/or growth times (total particle concentrations > 500 cm(-3 ), D-max < 100 nm) compared with background times (total concentrations < 500 cm(-3)) at SS of 0.26 %-0.99 %. This value increased to 25-425 cm(-3) if the growth times were limited to times when D-max was also larger than 40 nm. These results support past results from NETCARE by showing that the frequently observed ultrafine particle and growth events are dominated by a slightly hygroscopic fraction, which we interpret to be organic vapours originating from the ocean, and that these growing particles can increase the background CCN concentrations at SS as low as 0.26 %, thus pointing to their potential contribution to cloud properties and thus climate through the radiation balance.Peer reviewe

    Resolving brane collapse with 1/N corrections in non-Abelian DBI

    Get PDF
    A collapsing spherical D2-brane carrying magnetic flux can be described in the region of small radius in a dual zero-brane picture using Tseytlin's proposal for a non-Abelian Dirac-Born-Infeld action for N D0-branes. A standard large N approximation of the D0-brane action, familiar from the brane dielectric effect, gives a time evolution which agrees with the Abelian D2-brane Born-Infeld equations which describe a D2-brane collapsing to zero size. The first 1/N correction from the symmetrised trace prescription in the zero-brane action leads to a class of classical solutions where the minimum radius of a collapsing D2-brane is lifted away from zero. We discuss the validity of this approximation to the zero-brane action in the region of the minimum, and explore higher order 1/N corrections as well as an exact finite N example. The 1/N corrected Lagrangians and the finite N example have an effective mass squared which becomes negative in some regions of phase space. We discuss the physics of this tachyonic behaviour.Comment: 51 pages, 5 figures, LaTeX2e. Version 4: Formulae in Section 8 simplifie

    Loose Groups of Galaxies in the Las Campanas Redshift Survey

    Get PDF
    A ``friends-of-friends'' percolation algorithm has been used to extract a catalogue of dn/n = 80 density enhancements (groups) from the six slices of the Las Campanas Redshift Survey (LCRS). The full catalogue contains 1495 groups and includes 35% of the LCRS galaxy sample. A clean sample of 394 groups has been derived by culling groups from the full sample which either are too close to a slice edge, have a crossing time greater than a Hubble time, have a corrected velocity dispersion of zero, or contain a 55-arcsec ``orphan'' (a galaxy with a mock redshift which was excluded from the original LCRS redshift catalogue due to its proximity to another galaxy -- i.e., within 55 arcsec). Median properties derived from the clean sample include: line-of-sight velocity dispersion sigma_los = 164km/s, crossing time t_cr = 0.10/H_0, harmonic radius R_h = 0.58/h Mpc, pairwise separation R_p = 0.64/h Mpc, virial mass M_vir = (1.90x10^13)/h M_sun, total group R-band luminosity L_tot = (1.30x10^11)/h^2 L_sun, and R-band mass-to-light ratio M/L = 171h M_sun/L_sun; the median number of observed members in a group is 3.Comment: 32 pages of text, 27 figures, 7 tables. Figures 1, 4, 6, 7, and 8 are in gif format. Tables 1 and 3 are in plain ASCII format (in paper source) and are also available at http://www-sdss.fnal.gov:8000/~dtucker/LCLG . Accepted for publication in the September 2000 issue of ApJ

    An Analytical Study of Coupled Two-State Stochastic Resonators

    Full text link
    The two-state model of stochastic resonance is extended to a chain of coupled two-state elements governed by the dynamics of Glauber's stochastic Ising model. Appropriate assumptions on the model parameters turn the chain into a prototype system of coupled stochastic resonators. In a weak-signal limit analytical expressions are derived for the spectral power amplification and the signal-to-noise ratio of a two-state element embedded into the chain. The effect of the coupling between the elements on both quantities is analysed and array-enhanced stochastic resonance is established for pure as well as noisy periodic signals. The coupling-induced improvement of the SNR compared to an uncoupled element is shown to be limited by a factor four which is only reached for vanishing input noise.Comment: 29 pages, 5 figure

    Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer

    Get PDF
    Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype

    Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Get PDF
    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer–CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall–winter of 2007–2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, Îș, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH
    • 

    corecore