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Abstract 

Outdoor atmospheric chemistry and air quality have been the topic of research that intensified in earnest 

around the mid-20th century, while indoor air quality research has only been a key focus of chemical 

researchers over the last 30 years. Examining practices and approaches employed in the outdoor 

atmospheric chemistry research enterprise provides an additional viewpoint from which we can chart new 

paths to increase scientific understanding of indoor chemistry. This chapter explores our understanding of 

primary chemical sources, homogeneous and multiphase reactivity, gas-surface partitioning, and the 

coupling between the chemistry and dynamics of indoor air through the lens of outdoor atmospheric 

chemistry. The means to mitigate degraded air quality outdoors are heavily rooted in public policy actions, 

while the commercial sector mainly promulgates solutions for indoor air quality, making practical and 

actionable outcomes to research essential for prompt improvements to indoor environments. Indoor and 

outdoor environments have many important scientific distinctions, but a shared vision for healthy 

environments motivate both research communities in the same way. 

Introduction 

Air quality has been of general public awareness for centuries, but only became clearly codified over 

approximately the last 150 years. In the late 19th century, actions to address public health during intense 

urbanization were based, at least in part, on the human sense of smell in the waning years of adherence to 

miasma theory (Kiechle 2017). The notion that exposure to ‘bad air’ was a risk for contracting disease was 

broadly replaced by germ theory. Modern understanding of infectious disease, indeed, includes the 

possibility that a subset of known infectious diseases can be spread through exposure to airborne biological 

particles. However, a general sense of healthfulness continues to be connected with our sense of smell as a 

detector of air quality, both indoors and outdoors. Important health effects of poor air quality are also 

associated with exposure to chemical agents, rather than just biological ones; poor air quality is associated 

with various non-communicable diseases and is a leading global health risk factor (Murray et al. 2020). 

Scientific understanding of outdoor air quality has grown significantly since the mid-20th century. Tracking 

radiogenic isotopes released from atomic bomb detonations allowed for new insights on long range 

transport (Burton and Stewart 1960). Around the same period, smog formation represented an intense health 

and safety problem in major cities like Los Angeles and London; similar air quality problems persist to 

varying degrees to this day in urban environments around the globe. Arie Haagen-Smit’s discovery of the 

photochemical processes that created smog and recognition that ozone played a central role in urban air 

pollution (Haagen-Smit and Fox 1956) were critical achievements in establishing the importance of 
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chemistry in atmospheric phenomena that degraded air quality. Following growing scientific 

understanding, along with dedicated efforts to communicate these findings, government regulations and 

public policy have been used to address outdoor air quality problems to impressive effect (Hand et al. 2020). 

Key advancements in chemical analysis technology continue to allow for an ever-increasing level of detail 

in our understanding of atmospheric chemistry through increases in sensitivity, portability, spatial/temporal 

coverage, and chemical specificity to target measures that will help to mitigate poor air quality. 

Building science and indoor air quality have also advanced dramatically since the mid-20th century. Specific 

studies of indoor chemistry began in the 1970’s and have been accelerating especially since the mid-1990’s 

(Weschler 2011). In the same period, however, improvements to building technology and energy efficiency 

have advanced more rapidly than methods to thoroughly understand and address indoor air quality from a 

chemical perspective. It remains critical to increase our understanding of indoor chemistry and clearly 

communicate new knowledge to the public. Significant progress has been made in elucidating the chemistry 

that occurs in both the gas phase and on surfaces indoors. More recent applications of highly sensitive, 

specific, and rapid on-line chemical measurements of the gas phase, aerosol particles, and surfaces have 

continued to enhance our depth of understanding (Farmer 2019). Since improvements in indoor air quality 

are promulgated by the building industry, researchers need to continue to develop a clear and predictive 

understanding of the processes that lead to degraded air quality along with solutions for practitioners to 

implement. Therefore, the outcomes and goals of indoor chemistry studies differ slightly from outdoor air, 

where changes in public policy are often a more crucial element of effective solutions.  

In this chapter, we seek to unpack the approaches of outdoor atmospheric chemistry research with an eye 

toward their application to future studies of indoor air chemistry. The objective within each topical section 

is to explore several ways in which outdoor atmospheric chemistry has been conducted; examples have 

been chosen such that they shed light on the way that indoor chemistry is currently studied or could be 

studied in the future.  

Primary Chemical Sources 

Introduction of outdoor air is an important chemical source for indoor air. At the same time, mounting 

evidence shows the growing importance of indoor activities and emissions of volatile chemical products on 

outdoor air quality (McDonald et al. 2018). Processes that add chemical constituents to the air are important 

controlling factors in atmospheric chemistry and often represent the most viable opportunity for mitigating 

poor air quality. Considering only primary (i.e. direct) emissions, sources are often categorized as ‘natural’ 

or ‘anthropogenic,’ although the line can be blurred in some cases, like agriculture, wildfires, or land-use 

change. Each source has its own chemical signature, including but not limited to: a wide variety of volatile 

and semi-volatile organic compounds (VOCs and SVOCs: hydrocarbons, carbonyl compounds, organic 

acids, amines) including compounds that are considered to be persistent organic pollutants; oxides and/or 

oxoacids of sulfur (SO2, H2SO4), nitrogen (NO, NO2, HNO2, HNO3, organic nitrates), or carbon (CO, CO2); 

inorganic acids (HCl, H2S, HCN) and bases (NH3); and aerosol particles of organic, inorganic, biological, 

mineral, or mixed composition (Finlayson-Pitts and Pitts 2000). The source signatures of many types of 

anthropogenic sources can be replicated in laboratory settings if they are associated with engineered 

systems (e.g., combustion engines). However, deviations in emission strengths or chemical composition 

between controlled laboratory operating conditions and less-controlled field operation can be important 

(Frey et al. 2003; Gentner et al. 2017). Natural sources of aerosols and gases to the outdoor environment 

can be more challenging to simulate and study in a controlled manner. Emission processes can be the result 

of nuanced couplings between physical, chemical, and biological processes, along with a wide variety of 

spatial (nanometer to kilometer) and temporal (second to year) scales. 



To account for couplings between ambient environmental conditions and emission source signatures, field 

experiments are targeted for strategic or opportunistic sampling of the atmosphere. Anthropogenic sources 

can be probed over timescales in which variations in activity are either predictable or known externally, 

such as weekday/weekend studies or episodic shutdowns/reductions of source activity, like the public 

response to the COVID-19 global pandemic (Kroll et al. 2020). Field experiments, in some cases, yield less 

specific chemical information than is achievable in laboratory studies due to various confounding 

environmental factors, but provide key constraints and guidance for more fundamental study and continued 

model development. Improvements in transportable and field-deployable chemical measurement 

technology have enabled major advances, allowing for online measurement approaches to field campaigns 

that were previously restricted to laboratory studies or offline operation (Laskin et al. 2018). Supplementing 

field observations with controlled laboratory experimentation using emission source simulators can yield a 

greater depth of fundamental understanding, but are often subject to a variety of their own caveats. 

However, coordinated combinations of field measurements, laboratory studies, and modeling have provided 

significant insight on complex atmospheric chemistry topics (Burkholder et al. 2017; Ault et al. 2020). 

It is possible for indoor air quality to bridge the gap between field and laboratory studies more readily than 

outdoors, as perturbations to the indoor environment can be made deliberately. Two key approaches to 

perturbing indoor air composition are available: enhanced ventilation or air cleaning to rapidly reduce 

concentrations of compounds that are more abundant indoors than outdoors, and source modulation that 

can provide episodic additions of chemical constituents to indoor air. Each of these approaches can yield 

important insights about emission rates and rapid post-emission processes like chemical reactions or phase 

partitioning that act as sinks for aerosol particles or traces gases of interest. At the same time, care must be 

taken to understand the realism of the perturbation strength. Comparison of deliberate perturbations to 

indoor air composition and chemical processes should be compared against measurements of opportunistic 

perturbations due to non-prescribed occupant activity or normal building system operations. Modulation of 

HVAC operating status (cooling and heating cycles), window opening, day/night temperature and light 

cycles, and occupant cooking or cleaning activities are key opportunities for study.  

The concept that source emission and physicochemical processes near to the chemical source can respond 

to the environment has been noted indoors in the context of relative humidity (RH) and temperature (T) for 

some gases (Parthasarathy et al. 2011) and aerosol particles (Xie et al. 2007; Salimifard et al. 2017). 

Emission source behavior studies in realistic environments are important to perform, despite being subject 

to complication by interfering chemical signals or poorly-constrained sink processes that influence airborne 

constituent concentrations. Complementary use of controlled source characterization studies in the 

laboratory environment using smaller or more controllable chambers allows for deeper inspection of 

fundamental principles, while implementation of similar experiments in more complex, realistic indoor 

environments allows for an accounting of rapid interactions between the source and/or freshly emitted 

material with the realistic surroundings, providing an ‘effective’ source strength.  

Additional complexity beyond varying RH and T are possible. Studies of biosphere-atmosphere coupling 

in the outdoor environment require careful accounting for biogeochemical processes in terrestrial or marine 

environments. For instance, chamber studies of biogenic VOC production from plants may constrain 

emission rates, which can then be juxtaposed with emission estimates derived from ambient measurements 

of the same VOCs in or near a forest canopy outdoors. The field studies of ambient air may, for instance, 

make clear that measurements that account for stress responses, including those arising from herbivory or 

disease, are necessary (Faiola and Taipale 2020). In addition, meteorological conditions can influence the 

behavior of biological systems that drive emissions, and atmospheric conditions also influence the 

chemistry that may occur. For some biological systems, atmospheric deposition of limiting nutrients can 



drive productivity, which affects the fluxes and/or compositions of gases and particles emitted to the 

atmosphere (Mahowald et al. 2009).  

One approach to understanding biosphere-atmosphere interactions is to make a large suite of measurements 

near to (or within) a major biogenic source of emissions, such as the Amazon rainforest. This permits source 

signature characterization and studies of the reactivity as emissions are transported away from the source 

or interact with other atmospheric constituents (see Reactivity section below). The GoAmazon project  

involved a multi-platform field campaign that built upon a longer time series of chemical measurements 

from a tall tower in the Amazon (Martin et al. 2017). The study sampled both a ‘clean’ biogenic signature 

from the highly productive rainforest but juxtaposed the biogenic emissions with episodic influence from a 

major urban area (Manaus, Brazil). The indoor environment bears perhaps unexpected similarity to the 

GoAmazon study and other forested regions: the building and its contents are major sources of VOCs with 

their own emissions behavior. Indoor air composition is influenced by the ‘natural background’ of the 

building, with occupant activity or other time-dependent source behavior (e.g., cooking, cleaning, changes 

in outdoor air composition and introduction rate) superimposed on top. It becomes clear that a broad view 

of the building, its behaviors, and chemical signatures is important to gain a more holistic understanding of 

indoor air quality. 

A different approach to understanding a highly complex and coupled system is exemplified by approaches 

to understanding ocean-atmosphere exchange. The ocean is home to a large and diverse biomass that 

participates in chemical exchange with the atmosphere. Deposition of inorganic material (e.g., iron, nitrate, 

phosphate) and uptake of CO2 provide nutrients for primary production and carbon fixation by microalgae 

(Emerson and Hedges 2008; Mahowald et al. 2009), but changes in microbiological activity of the near-

surface ocean can drive major changes in the water-to-air fluxes of both particles and gases (Wurl et al. 

2017; Collins and Grassian 2018). Recognizing the effects of microbial succession on the organic 

composition of the surface ocean (Prather et al. 2013) has provided key insights into the aerosols and gases 

that arise from differences in biological activity (Wang et al. 2015; Mayer et al. 2020) that naturally occur 

on month-long and kilometer scales (Dall’Osto et al. 2019). At the same time, the physical processes that 

control material fluxes across the air-sea interface occur on the micrometer length scale and involve 

nuanced (bio)chemistry that occurs in a thin gelatinous film on the ocean surface called the sea surface 

microlayer (SSML) (Cunliffe and Murrell 2009). Biogeochemical processes occurring within the SSML 

can be sources of trace gases, but the physical properties of the SSML also physically mediate air-sea gas 

transfer in both directions (Frew 1997; Wurl et al. 2017). In addition, the air-exposed film may participate 

in multiphase chemistry, leading to the reactive uptake and/or production of various trace gases (Wurl et 

al. 2017; Collins and Grassian 2018; Schneider et al. 2019). In the indoor environment, significant effort 

on the microbiology of the built environment has been initiated (Gilbert and Stephens 2018). Treating the 

indoor microbiome in a manner analogous to the microbiome of the surface ocean could yield important 

new insights. It could be important to treat the bi-directional exchange of material on microbially-colonized 

indoor surfaces with care, as a recent study has shown that the gut microbiome can respond to the chemical 

environment to which a person is exposed (Gardner et al. 2020). Do bi-directional feedbacks and/or 

important couplings exist between the microbial communities and the chemistry of the air within a building? 

Reactivity 

The strength and nature of the sources that supply reactive compounds to the atmosphere impart an 

important control on the overall amount and type of reactivity observed in the air. Most gaseous and aerosol 

reactions in the outdoor atmosphere are driven by a cascade of energy from ultraviolet (UV) light in the 

Sun’s spectrum. Although the most energetic photons are removed in the stratosphere, sunlight with 

wavelengths in the near UV range penetrate to the ground. Through photochemistry, OH radicals are 



formed, which then oxidize VOCs and lead to the formation of O3 when NOx is present. This flow of energy 

from the Sun also drives nocturnal chemistry, with O3 formed during the day reacting in the dark with 

alkenes, also forming radicals (Finlayson-Pitts and Pitts 2000). The implicit approach in atmospheric 

chemistry is to attempt to define the dispersal of photochemical energy: Which oxidants form? What are 

their sinks? What oxidation products arise? Large field campaigns are organized around simultaneous, in-

situ measurement of short-lived radicals and their precursors along with assessments of radical loss 

mechanisms (Carlton et al. 2018). Photochemical models, which include representations of fundamental 

gas-phase chemistry and are constrained by observations from field studies, embody our understanding of 

the energy cascade from sunlight into more oxidized species.  

The same questions arise with the chemistry of aerosol particles and cloud droplets, requiring detailed 

chemical characterization of the condensed-phase component of the atmosphere. Such multiphase 

chemistry involves the coupled chemical and mass transfer interactions of atmospheric gases with the 

surfaces and interior of aerosols, cloud droplets, and ground materials (Ravishankara 1997). In particular, 

the gaseous products of oxidation reactions may partition to aerosol particles (see Partitioning section 

below), giving rise to secondary aerosol formation.  In aqueous aerosol particles and cloud droplets, it is 

important to evaluate the degree to which condensed-phase oxidants such as H2O2 react with dissolved 

constituents, giving rise to more oxidized and water-soluble species. This is how one important component 

of acid rain, sulfuric acid, forms. 

We can also track the Sun’s input, along with generated oxidants and their impacts, to the indoor 

environment. Although sunlight penetrates windows, the shortest, most photochemically-active 

wavelengths are attenuated by glass and the total indoor volume illuminated by direct sunlight is generally 

low. As well, most indoor lighting is a weak source of UV light (Kowal et al. 2017). As a result, less 

photochemical energy is available indoors than outdoors and OH radical concentrations are generally low, 

largely generated by ozone/alkene reactions. Coupled with short indoor air residence times (on the order of 

hours) (Murray and Burmaster 1995), conditions are not conducive for gaseous reactions to be the primary 

chemical sink for most indoor contaminants. Ozone is an important low-light oxidant, but is not generated 

in-situ to a significant degree (Young et al. 2019).  While secondary organic aerosol formation can occur 

in specific situations with high organic precursor and oxidant levels (Waring 2014), the relative contribution 

of indoor secondary aerosol formation is smaller than the importance of secondary aerosol formation to the 

total outdoor aerosol mass.  Rather, a characteristic feature of indoor environments is that the major flux of 

photochemically-generated secondary pollutants, such as O3, NO2, and organic- and sulfate-containing 

aerosol, is usually associated with introduction of outdoor air. As described above, tracking outdoor-to-

indoor transport is a major focus of indoor chemistry and represents a key connection point to outdoor air 

quality. 

With oxidant mixing ratios considerably lower than in outdoor environments, a common misconception is 

that little oxidation chemistry occurs indoors. In specific situations, gas-phase reactions of ozone with high 

mixing ratios of terpenes and photolysis of HONO in direct sunlight are important sources of indoor OH 

(Finlayson-Pitts and Pitts 2000; Gómez Alvarez et al. 2013).  As well, ozone mixing ratios are low indoors 

because so much oxidation chemistry is occurring. Just as in outdoor environments, where ozone dry 

deposits onto reactive surfaces like vegetation, ozone experiences efficient deposition to indoor surfaces 

with high surface-area-to-volume ratios and which can be coated by reactive surface-sorbed molecules 

(Morrison 2008), such as unsaturated oils from humans or cooking (Zhou et al. 2019b), or products of 

incomplete combustion such as polycyclic aromatic hydrocarbons (Zhou et al. 2019a). Whereas the 

approach of outdoor air pollution research is to focus on the exposure to airborne pollutants by inhalation, 

it is important to consider indoor exposures based also on human contact with contaminated surfaces, like 



dermal uptake or ingestion. The broader spectrum of exposure routes relevant to indoor environments lends 

importance to understanding the nature of gas-surface multiphase processes.   

In the gas phase, an exciting recent finding is the significance for organic molecules of auto-oxidation 

processes driven by rapid intramolecular isomerizations, giving rise to the formation of highly oxygenated 

organic molecules (HOMs) (Crounse et al. 2013). Although studied to understand rapid oxidation processes 

in outdoor environments, even low indoor OH radical and ozone concentrations have the potential to drive 

the formation of secondary organic aerosol (Kruza et al. 2020). As well, surface-sorbed molecules can react 

via OH-surface collisions, leading to gradual modification of surface composition over long periods 

(Alwarda et al. 2018; Morrison et al. 2019).  

A distinct and important set of indoor chemical reactions occurs via the use of cleaning agents. The 

oxidizing capacity of the indoor environment can be amplified significantly in a manner not applicable to 

outdoor air. Cleaning agents like chlorine bleach and hydrogen peroxide, which are excellent non-specific 

biological oxidizing agents, are used in large quantities, especially during the COVID-19 pandemic. HOCl, 

which exists in both the aqueous and gaseous phases during chlorine bleach use, reacts with a wide variety 

of organic functional groups, including amines, thiols, and carbon-carbon double bonds to form 

organochlorine products. In addition, HOCl can drive the formation of volatile chloramines and other 

reactive species when bleach washing is used (Wong et al. 2017; Mattila et al. 2020). H2O2 is also an 

effective biocide that can photochemically release gas-phase OH when used in large quantities and can also 

decompose to generate condensed-phase OH radicals on surfaces in the presence of iron.   

A challenge to both indoor and outdoor communities is the study of reactions between closed-shell 

molecules without direct photochemical involvement.  High molecular weight organic species form within 

aerosol particles via condensation reactions between oxygenated organic precursors (Jang et al. 2002).  

They are likely to also form in highly concentrated organic films like the sea-surface microlayer and are 

important on indoor surfaces where reaction times are long and reactant surface concentrations can be high. 

As well, it is known that the ester linkages in surface-bound phthalates can hydrolyze if the pH conditions 

of the substrates are appropriate (Bope et al. 2019). Such reactions are generally neglected outdoors, given 

that they are fastest under alkaline conditions.  

Partitioning 

Determining whether a molecule resides in the gas phase or in an aerosol particle, or is part of a surface 

reservoir, is of central importance to assessments of human chemical exposure, both indoors and out.  Gases 

can be inhaled but soluble species are scavenged from the breath high in the respiratory tract.  Molecules 

residing in fine particulate matter can reach deep into the lungs before being deposited.  Dermal exposure 

can occur via touching contaminated surfaces or through interactions with contaminants that have 

partitioned to clothing.  

In the outdoor environment, the recent focus on phase partitioning has centered around secondary organic 

aerosol: the oxidation of VOC precursors leads to the formation of semi-volatile species that can partition 

to aerosol particles.  The HOMs that arise from auto-oxidation processes (see Reactivity section above) are 

frequently of such low volatility that they either undergo one-way condensation to pre-existing particles or 

to help nucleate new particles (Bianchi et al. 2019). On the other hand, some emissions from the tail pipe 

of an internal-combustion-engine car are initially part of the particulate exhaust from the car, but then 

evaporate as dilution occurs downwind of the emission source (Robinson et al. 2007). It is important to 

describe this highly dynamic environment, with molecules readily moving from the gas phase to aerosol 

particles and back again.   



Recent indoor studies also attempt to capture that dynamic partitioning, illustrated nicely by the impact of 

third-hand tobacco smoke on indoor air quality. Semi-volatile smoking emissions deposited to indoor walls, 

furniture, and clothing re-volatilize from these surfaces long after, or far away, from the smoking event 

(DeCarlo et al. 2018).  A striking example is the impact of tobacco smoking on the air quality in a non-

smoking movie theatre, where high levels of smoke-derived VOCs are observed in the theatre having been 

carried inside on the clothing of occupants who previously smoked outside (Sheu et al. 2020). These VOCs 

can partition to aerosol particles, changing their composition to partly reflect the composition of the third-

hand smoke (Collins et al. 2018b).  

Gas-surface partitioning behavior is also apparent in indoor spaces when they are ventilated, by opening 

windows for example. The mixing ratios of most gases, ozone and NOx being notable exceptions in most 

cases, decline because the indoor air is diluted with cleaner air from outside. When the windows are closed, 

the mixing ratios re-establish steady state levels, reflecting the flux of molecules from indoor surface 

reservoirs to the gas phase (Collins et al. 2018a; Wang et al. 2020).  On the other hand, when excess HONO 

is added to a house, for example from a gas stove, it is readily taken up by the indoor surface reservoirs 

(Collins et al. 2018a).  Valuable insights into chemical mechanisms can be readily conducted indoors by 

such perturbation experiments. 

A perturbation also arises from the partitioning-dependence of acidic and basic molecules when acidic (i.e. 

vinegar) or basic (i.e. ammonia) cleaning solutions are used (Wang et al. 2020).  Acidic gases that dissociate 

upon partitioning into polar indoor surface reservoirs are released to a room when vinegar washing 

proceeds, i.e. the additional acidity shifts the equilibrium state in the surface towards the more volatile, non-

dissociated from of the acid. Less water-soluble molecules do not behave in this manner, likely because 

they are either partitioned into a less polar, more organic-rich surface reservoir or because pH does not 

affect their volatility.     

Outdoors, forced system perturbations are not possible and we rely instead on the natural variability of the 

environment to provide such information.  For example, the flux of ammonia to and from the Earth’s surface 

is dependent on the gas-phase ammonia mixing ratio, the pH of the water in the ground, and the pH of the 

aerosol in the overlying atmosphere. Such bi-directional flux behavior is only now being incorporated into 

chemical transport models of the outdoor atmosphere (Whaley et al. 2018; Pleim et al. 2019).  

Finally, partitioning to liquid water is a well-known phenomenon in outdoor environments, where water-

soluble gases are readily scavenged to cloud water. This is one of the major atmospheric cleansing 

processes. These lessons are being applied indoors when considering the impact of air conditioning systems 

on the behavior of water soluble molecules (Duncan et al. 2019; Wang et al. 2020). Liquid water condenses 

on the cold coils of the air conditioning unit, leading to partitioning of soluble gases. This process is 

manifest as oscillatory water-soluble gas mixing ratio behavior in the indoor space, as the air conditioning 

unit that recycles the air turns off and on.  There is a direct analogy to clouds: when it rains, water soluble 

gases are removed from the atmosphere, but cloud droplet evaporation leads to their release back to the gas 

phase.  Likewise, with air conditioning, if sufficient water builds up on the cooling coils that it drains from 

the unit, then the air inside the house is cleaned somewhat of those species. If the water evaporates instead, 

those species are returned to the gas phase. In addition to impacts on gas-phase composition, control of 

indoor environmental conditions also affects aerosol phase state and water content (Cummings et al. 2020).  

Impact of Dynamics on Chemistry 

Simultaneous production, consumption, phase partitioning, and transport of chemicals in the environment 

necessitates a broad and multi-faceted approach to realizing an understanding of the system as a whole. 

Advances in atmospheric chemistry often come through the interplay of field measurements, laboratory 



studies, and modeling due to the complex nature of atmospheric chemical processes and their interplay with 

environmental conditions and the dynamics and structure of the atmosphere (Burkholder et al. 2017).  

The atmosphere, while a seemingly continuous fluid medium, has a variety of structural features that control 

chemistry. Atmospheric boundaries, like zonal boundaries in a building, limit mixing between two parcels 

of air, but are penetrable on relatively long timescales. Certain chemical processes that may be rapid in one 

region of the atmosphere, such as catalytic ozone destruction the stratosphere, are unimportant in other 

regions. The so-called ‘ozone hole’ in Earth’s stratosphere is a seasonal feature that only becomes apparent 

when cloud particles are abundant during polar sunrise (Molina et al. 1987; Tolbert et al. 1987) and when 

a distinct fluid dynamical zone, the polar vortex, restricts mixing with air at lower latitudes (Schoeberl and 

Hartmann 1991). Still, the halocarbon compounds that lead to catalytic ozone-depletion (Molina and 

Rowland 1974) are emitted at Earth’s surface and are only capable of reaching the stratosphere because 

they have atmospheric lifetimes that are much longer than the characteristic mixing time across the 

tropopause (the boundary that separates the troposphere from the overlying stratosphere). This classic 

atmospheric chemistry example illustrates the importance of characterizing the chemical environments of 

different indoor zones by carefully taking into account the sources, chemistry, transport, and the importance 

of different phases to a given phenomenon. 

Recent studies using real-time measurements of trace gases have illustrated the level of control that 

transport dynamics and the boundary structure within buildings have on the composition of indoor air. 

Space- and time-resolved measurements of inhabited buildings (e.g., residences, schools, and offices) 

require sophisticated instrumentation, broad access to the building for scientists, and careful collection of 

metadata, but can yield important results and information about the impact of indoor activities and building 

structure on indoor air quality. A notable study using a residence across multiple seasons employed a 

chemical tracer approach to understand and quantify transport between zones (Liu et al. 2018). The route 

of air exchange between the indoors and outdoors may be important to consider and may include a variety 

of parallel paths including transit through other zones of the building. Such behavior may have important 

implications for the chemicals that can be lost from, or entrained within, the air as it moves from outdoors 

to indoors; physical and chemical aspects of the building itself may have important and non-intuitive 

impacts on the chemistry that drives indoor air quality.  

Modeling the interplay of chemistry and dynamics in the outdoor atmosphere is often performed on a variety 

of spatial scales: from full global simulations down detailed regional models, and then even further down 

to simulate the detailed physics of single clouds, for instance. The level of detail in a large-scale model is 

necessarily coarse and becomes generally more sophisticated as the model scale becomes smaller. Gas 

phase chemistry can be simulated in roughly any pixel or grid cell size with the assumption that the grid 

cell is homogeneously mixed. Using this ‘well mixed’ assumption, box modeling has proven useful for a 

variety of indoor chemistry scenarios for the last few decades. Exciting results from computational fluid 

dynamics (CFD) models that include chemical mechanisms are beginning to show interesting and important 

chemical gradients within a single building zone (Won et al. 2019, 2020). Spatially-resolved chemical 

measurements of air within a room could be designed to couple with CFD modeling. Process-level chemical 

models may be nested within the CFD simulations or could be parameterized to reduce computational 

expense. Efforts to reduce computational cost has enabled major advancements in atmospheric and 

chemical modeling. Collaboration between computational scientists (Shiraiwa et al. 2019) will help to 

translate indoor measurements and process-level studies into actionable outcomes and should strive to 

produce new computational tools to advance the practice of producing and maintaining healthy 

environments within buildings. 

Working Toward Solutions 



Collaboration amongst experts in diverse fields of engineering, chemistry, biology, public policy, building 

science, public health, and others will be required to grasp the breadth of interactions that influence indoor 

air quality and to devise methods for optimizing the living and working environment where many people 

spend the majority of their lives. Outdoor atmospheric chemistry issues that represent degraded 

environmental conditions (e.g., acid rain, stratospheric ozone depletion, urban pollution) have been 

addressed through broad public policy actions such as the international Montreal Protocol on Substances 

that Deplete the Ozone Layer or the Clean Air Act in the United States. Indoor air quality, however, is 

subject to weaker government regulation and has been mostly addressed by concerned homeowners or 

private institutions. A commercial indoor air quality industry has thus emerged to enable private mitigation 

actions to take place. Outdoor air quality issues include important aspects of environmental justice, as poor 

air quality disproportionately affects impoverished and non-white communities (Mikati et al. 2018). Health 

risks due to ambient airborne particulate matter pollution exposure are decreasing in wealthier regions and 

increasing in poorer regions worldwide (Murray et al. 2020). Since people spend a dominant fraction of 

their time indoors (Klepeis et al. 2001), a large portion of unhealthy outdoor air is actually breathed while 

inside the home. Housing quality has also been shown to have a relationship with rates of asthma and other 

chronic diseases, specifically among urban public housing inhabitants (Digenis-Bury et al. 2008; 

Northridge et al. 2010), where poor indoor environmental quality can compound negative effects of outdoor 

air quality. The comparatively weak ability of poorer groups living in nations with highly developed 

economies, along with large swaths of people in nations with still developing economies, to implement 

adaptations to our changing climate will exacerbate inequalities in housing and indoor air quality (Islam 

and Winkel 2017). The commercialization and private-responsibility that has been built into improving 

indoor air quality has the potential to multiply existing environmental inequalities as groups of people with 

low access to financial resources may not have the means or the opportunity to implement engineering 

solutions or retrofits that mitigate degraded indoor air quality (Northridge et al. 2010). As experts and 

practitioners of air quality studies and solutions, we must acknowledge and work against structural 

inequality from our own perspectives and positions of power.   
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