10 research outputs found

    Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors

    Get PDF
    Mast cells are tissue-resident cells with important functions in allergy and inflammation. Pluripotential hematopoietic stem cells in the bone marrow give rise to committed mast cell progenitors that transit via the blood to tissues throughout the body, where they mature. Knowledge is limited about the factors that release mast cell progenitors from the bone marrow or recruit them to remote tissues. Mouse femoral bone marrow cells were cultured with IL-3 for 2 wk and a range of chemotactic agents were tested on the c-kit+ population. Cells were remarkably refractory and no chemotaxis was induced by any chemokines tested. However, supernatants from activated mature mast cells induced pronounced chemotaxis, with the active principle identified as leukotriene (LT) B4. Other activation products were inactive. LTB4 was highly chemotactic for 2-wk-old cells, but not mature cells, correlating with a loss of mRNA for the LTB4 receptor, BLT1. Immature cells also accumulated in vivo in response to intradermally injected LTB4. Furthermore, LTB4 was highly potent in attracting mast cell progenitors from freshly isolated bone marrow cell suspensions. Finally, LTB4 was a potent chemoattractant for human cord blood–derived immature, but not mature, mast cells. These results suggest an autocrine role for LTB4 in regulating tissue mast cell numbers

    Real-world tyrosine kinase inhibitor treatment pathways, monitoring patterns and responses in patients with chronic myeloid leukaemia in the United Kingdom: the UK TARGET CML study.

    Get PDF
    Management of chronic myeloid leukaemia (CML) has recently undergone dramatic changes, prompting the European LeukemiaNet (ELN) to issue recommendations in 2013; however, it remains unclear whether real-world CML management is consistent with these goals. We report results of UK TARGET CML, a retrospective observational study of 257 patients with chronic-phase CML who had been prescribed a first-line TKI between 2013 and 2017, most of whom received first-line imatinib (n = 203). Although 44% of patients required ≥1 change of TKI, these real-world data revealed that molecular assessments were frequently missed, 23% of patients with ELN-defined treatment failure did not switch TKI, and kinase domain mutation analysis was performed in only 49% of patients who switched TKI for resistance. Major molecular response (MMR; BCR-ABL1IS ≤0·1%) and deep molecular response (DMR; BCR-ABL1IS ≤0·01%) were observed in 50% and 29%, respectively, of patients treated with first-line imatinib, and 63% and 54%, respectively, receiving a second-generation TKI first line. MMR and DMR were also observed in 77% and 44% of evaluable patients with ≥13 months follow-up, receiving a second-generation TKI second line. We found little evidence that cardiovascular risk factors were considered during TKI management. These findings highlight key areas for improvement in providing optimal care to patients with CML

    The function of CCR3 on mouse bone marrow-derived mast cells in vitro

    No full text
    The mechanisms governing the population of tissues by mast cells are not fully understood, but several studies using human mast cells have suggested that expression of the chemokine receptor CCR3 and migration to its ligands may be important. In CCR3-deficient mice, a change in mast cell tissue distribution in the airways following allergen challenge was reported compared with wild-type mice. In addition, there is evidence that CCR3 is important in mast cell maturation in mouse. In this study, bone marrow-derived mast cells (BMMCs) were cultured and CCR3 expression and the migratory response to CCR3 ligands were characterized. In addition, BMMCs were cultured from wild-type and CCR3-deficient mice and their phenotype and migratory responses were compared. CCR3 messenger RNA was detectable in BMMCs, but this was not significantly increased after activation by immunoglobulin E (IgE). CCR3 protein was not detected on BMMCs during maturation and expression could not be enhanced after IgE activation. Resting and IgE-activated immature and mature BMMCs did not migrate in response to the CCR3 ligands eotaxin-1 and eotaxin-2. Comparing wild-type and CCR3-deficient BMMCs, there were no differences in mast cell phenotype or ability to migrate to the mast cell chemoattractants leukotriene B4 and stem cell factor. The results of this study show that CCR3 may not mediate mast cell migration in mouse BMMCs in vitro. These observations need to be considered in relation to the findings of CCR3 deficiency on mast cells in vivo

    Immunopharmacology and Inflammation G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: Roles of Mas-related genes MrgX1 and MrgX2

    No full text
    a b s t r a c t a r t i c l e i n f o Although human mast cells express G protein coupled receptors for the anaphylatoxin C3a, previous studies indicated that C3a causes mast cell degranulation, at least in part, via a C3a receptor-independent mechanism similar to that proposed for polycationic molecules such as compound 48/80. The purpose of the present study was to delineate the receptor specificity of C3a-induced degranulation in human mast cells. We found that C3a, a C3a receptor "superagonist&quot

    G Protein Coupled Receptor Specificity for C3a and Compound 48/80-Induced Degranulation in Human Mast Cells: Roles of Mas-Related Genes MrgX1 and MrgX2.

    Get PDF
    Although human mast cells express G protein coupled receptors for the anaphylatoxin C3a, previous studies indicated that C3a causes mast cell degranulation, at least in part, via a C3a receptor-independent mechanism similar to that proposed for polycationic molecules such as compound 48/80. The purpose of the present study was to delineate the receptor specificity of C3a-induced degranulation in human mast cells. We found that C3a, a C3a receptor “superagonist” (E7) and compound 48/80 induced Ca2+ mobilization and degranulation in a differentiated human mast cell line, LAD2. However, C3a and E7 caused Ca2+ mobilization in an immature mast cell line, HMC-1 but compound 48/80 did not. We have previously shown that LAD2 cells express MrgX1 and MrgX2 but HMC-1 cells do not. To delineate the receptor specificity for C3a and compound 48/80 further, we generated stable transfectants expressing MrgX1 and MrgX2 in a rodent mast cell line, RBL-2H3 cells. We found that compound 48/80 caused degranulation in RBL-2H3 cells expressing MrgX1 and MrgX2 but C3a did not. By contrast, E7 activated RBL-2H3 cells expressing MrgX2 but not MrgX1. These findings demonstrate that in contrast to previous reports, C3a and compound 48/80 do not use a shared mechanism for mast cell degranulation. It shows that while compound 48/80 utilizes MrgX1 and MrgX2 for mast cell degranulation C3a does not. It further reveals the novel finding that the previously characterized synthetic peptide, C3a receptor “superagonist” E7 activates human mast cells via two mechanisms; one involving the C3a receptor and the other MrgX2

    PMX-53 as a Dual CD88 Antagonist and an Agonist for Mas-Related Gene 2 (MrgX2) in Human Mast Cells

    No full text
    Human mast cells express the G protein coupled receptor (GPCR) for C5a (CD88). Previous studies indicated that C5a could cause mast cell degranulation, at least in part, via a mechanism similar to that proposed for basic neuropeptides such as substance P, possibly involving Mas-related gene 2 (MrgX2). We therefore sought to more clearly define the receptor specificity for C5a-induced mast cell degranulation. We found that LAD2, a human mast cell line, and CD34+ cell-derived primary mast cells express functional MrgX1 and MrgX2 but the immature human mast cell line HMC-1 does not. A potent CD88 antagonist, PMX-53 (10 nM) inhibited C5a-induced Ca2+ mobilization in HMC-1 cells, but at higher concentrations (≥30 nM) it caused degranulation in LAD2 mast cells, CD34+ cell-derived mast cells, and RBL-2H3 cells stably expressing MrgX2. PMX-53 did not, however, activate RBL-2H3 cells expressing MrgX1. Although C5a induced degranulation in LAD2 and CD34+ cell-derived mast cells, it did not activate RBL-2H3 cells expressing MrgX1 or MrgX2. Replacement of Trp with Ala and Arg with dArg abolished the ability of PMX-53 to inhibit C5a-induced Ca2+ mobilization in HMC-1 cells and to cause degranulation in RBL-2H3 cells expressing MrgX2. These findings demonstrate that C5a does not use MrgX1 or MrgX2 for mast cell degranulation. Moreover, it reveals the novel finding that PMX-53 functions as a potent CD88 antagonist and a low-affinity agonist for MrgX2. Furthermore, Trp and Arg residues are required for the ability of PMX53 to act as both a CD88 antagonist and a MrgX2 agonist
    corecore