157 research outputs found
AXIOM: advanced X-ray imaging of the magnetosphere
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission
AXIOM: Advanced X-Ray Imaging Of the Magnetosheath
AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space
Soft X‐ray and ENA Imaging of the Earth’s Dayside Magnetosphere
The LEXI and SMILE missions will provide soft X‐ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X‐ray and low‐ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X‐rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global‐scale magnetopause reconnection. When dayside imagers are installed with high‐ENA inner‐magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self‐standing manner without relying upon other observatories. Soft X‐ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather
Recent translational research: Oncogene discovery by insertional mutagenesis gets a new boost
Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional muta-genesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost
Dietary supplementation with hydrolyzed yeast and its effect on the performance, intestinal microbiota, and immune response of weaned piglets.
The objective of this study was to evaluate the effects of autolyzed yeast on performance, cecal microbiota, and leukogram of weaned piglets. A total of 96 piglets of commercial line weaned at 21-day-old were used. The experimental design was a randomized block design with four treatments (diets containing 0.0%, 0.3%, 0.6%, and 0.9% autolyzed yeast), eight replicates, and three animals per pen in order to evaluate daily weight gain, daily feed intake, and feed conversion in periods of 0 to 15, 0 to 26, and 0 to 36 days. Quadratic effects of autolyzed yeast inclusion were observed on the feed conversion from 0 to 15 days, on daily weight gain from 0 to 15 days, 0 to 26 days and, 0 to 36 days, indicating an autolyzed yeast optimal inclusion level between 0.4% and 0.5%. No effect from autolyzed yeast addition was observed on piglet daily feed intake, cecal microbiota, and leukogram; however, i.m. application of E. coli lipopolysaccharide reduced the values of total leukocytes and their fractions (neutrophils, eosinophils, lymphocytes, monocytes, and rods). Therefore, autolyzed yeast when provided at levels between 0.4% and 0.5% improved weaned piglets’ performance.info:eu-repo/semantics/publishedVersio
“A People That Would Take Care of Ourselves”: Tyler Perry’s Vision of Community and Gender Relations
- …
