9 research outputs found

    Understanding the structure directing action of copper-polyamine complexes in the direct synthesis of Cu-SAPO-34 and Cu-SAPO-18 catalysts for the selective catalytic reduction of NO with NH3

    Get PDF
    This work has been supported by Johnson Matthey PLC, UK.Cu2+ cations complexed by linear polyamines have been studied as structure-directing agents (SDAs) for the direct synthesis of copper-containing microporous silicoaluminophosphate (SAPO) materials. The complexing ligands diethylenetriamine (DETA), N-(2-hydroxyethyl)ethylenediamine (HEEDA), triethylenetetramine (TETA), N,N′-bis(2-aminoethyl)-1,3-propanediamine (232), 1,2-bis(3-aminopropylamino)ethane (323), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA) have been investigated. For comparison, syntheses have been performed using the analogous nickel-polyamine complexes. Cu2+ and Ni2+ forms of both SAPO-18 and SAPO-34 materials have been prepared. While most polyamine complexes direct crystallisation to SAPO-34, SAPO-18 has been prepared with Cu2+(232), Ni2+(232) and Ni2+(TETA). The coordination geometry of the included metal complexes was studied by UV-visible and EPR spectroscopy and computer simulation. SAPO-18 is favoured by the smaller square planar complexes or octahedral species (with 2 water molecules) of 232 and TETA. Calcination leaves extra-framework Cu2+ and Ni2+ cations within SAPO-18 and SAPO-34 frameworks. In situ synchrotron IR spectroscopy of Ni-SAPO-18 has shown thermal template degradation occurs via nitrile intermediates. Rietveld structural analysis located extra-framework Cu2+ and Ni2+ cations released by calcination. In SAPO-34, Cu2+ and Ni2+ were located in the 8R window of the cha cage. A second site was found for Ni2+ at the centre of the six-membered rings (6Rs) of the double-six-ring (D6R) sub-units. In SAPO-18 both Cu2+ and Ni2+ cations were located only in the 6Rs of the D6R sub-units. Selected copper SAPO-18 and SAPO-34 samples were tested in the selective catalytic reduction of NO with ammonia (NH3-SCR); both showed high activity.PostprintPostprintPeer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Formation of reactive Lewis acid sites on Fe/WO3-ZrO2 catalysts for higher temperature SCR applications

    No full text
    Tungsten-zirconia (WO3-ZrO2), which oxidises NH3 but shows no NOx-reduction activity, can be converted into an active ammonia-SCR catalyst by impregnation with Fe. The role of Fe in inducing SCR activity has been studied by relating the catalytic performance of tungsten-zirconia materials (containing 0, 0.5, 2, 3 and 10 wt% Fe) to their surface acidity, which has been probed by pyridine adsorption. The most active material, 3wt% Fe/WO3-ZrO2, reduces NOx by 10-20% at the minimum temperature tested (150 °C), and achieves 80-85% conversion at temperatures between 400 and 550 °C. The performance can be correlated with the formation of new Fe3+ Lewis acid sites that have a pivotal role in the SCR reaction by activating NOx, and which are associated with a characteristic peak shift in the IR spectrum of adsorbed pyridine. The introduction of Fe also has the effect of increasing the strength of the Brønsted acidity, which accounts for the similarity in activity observed between the Fe/WO3-ZrO2 materials and benchmark Fe/beta-zeolite catalysts at higher temperatures

    TGFβ superfamily signaling regulates the state of human stem cell pluripotency and competency to create telencephalic organoids

    Get PDF
    Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are emerging as an effective system to study the distinct features of the developing human brain and the underlying causes of many neurological disorders. While progress in organoid technology has been steadily advancing, many challenges remain including rampant batch-to-batch and cell line-to-cell line variability and irreproducibility. Here, we demonstrate that a major contributor to successful cortical organoid production is the manner in which hPSCs are maintained prior to differentiation. Optimal results were achieved using fibroblast-feeder-supported hPSCs compared to feeder-independent cells, related to differences in their transcriptomic states. Feeder-supported hPSCs display elevated activation of diverse TGFβ superfamily signaling pathways and increased expression of genes associated with naïve pluripotency. We further identify combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enable reproducible formation of brain structures suitable for disease modeling

    TGFβ superfamily signaling regulates the state of human stem cell pluripotency and capacity to create well-structured telencephalic organoids.

    No full text
    Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor β (TGFβ) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFβ-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling

    Synaptic, transcriptional and chromatin genes disrupted in autism.

    No full text
    corecore