6 research outputs found

    Divergence in CD8+ T Cell Epitopes of HIV-1 as an Immune Escape Mechanism

    Get PDF
    More than 40 million people are living with human immunodeficiency virus-1 (HIV-1). A prophylactic vaccine inducing a 'sterilizing immunity' is desired to prevent further infections, but will require many years to develop. Moreover, prophylactic vaccines will not help the millions of people who are already infected with the virus, and who face life-long treatment with expensive and toxic antiretroviral therapy (ART). This dissertation is based on the proposal that the best strategy for these individuals is a therapeutic vaccine that will attack residual viral reservoirs by expanding HIV-1 specific, primary T cell responses to the persons's own, autologous virus. Previously, this laboratory demonstrated that mature dendritic cells (DC) loaded with immunodominant HIV-1 peptides or HIV-1 infected apoptotic bodies can activate residual HIV-1 specific memory T cell responses. However, such memory T cells are only partially restored during ART. I hypothesized that targeting naive CD8⁺ T cells through a DC-based immunotherapy could elicit a robust and broad T cell response to HIV-1. Furthermore, most immunotherapy studies have used consensus strains of HIV-1 antigens that I believe inadequately represent the host's diverse pool of HIV-1 quasispecies. The current study has provided initial data that support that CD8⁺ T cells can be primed by in vitro engineered DC, even against autologous HIV-1 peptides representing immune escape variants. This study therefore supports the concept of using autologous virus as an antigen in immunotherapy and demonstrates that the use of autologous viral sequences expands both memory and primary T cell responses in vitro. Thus, a potential advantage is that future immunotherapies could use autologous virus representing a large repertoire of the host's diverse HIV-1 antigen pool. This could elicit primary immune responses specific for each patient's quasispecies of HIV-1, as well as activation of residual HIV-1 specific memory T cells, giving the broadest immune control of HIV-1 infection during ART. Such an approach has important public health implications by having a strong positive impact on, and improve the control of, HIV-1 infection in persons on ART. It also serves as an in vitro priming model for development of prophylactic vaccines against HIV-1 and other infectious agents

    Primary Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses Induced by Myeloid Dendritic Cells▿

    No full text
    Induction of an antigenically broad and vigorous primary T-cell immune response by myeloid dendritic cells (DC) in blood and tissues could be important for an effective prophylactic or therapeutic vaccine to human immunodeficiency virus type 1 (HIV-1). Here we show that a primary CD8+ T-cell response can be induced by HIV-1 peptide-loaded DC derived from blood monocytes of HIV-1-negative adults and neonates (moDC) and by Langerhans cells (LC) and interstitial, dermal-intestinal DC (idDC) derived from CD34+ stem cells of neonatal cord blood. Optimal priming of single-cell gamma interferon (IFN-γ) production by CD8+ T cells required CD4+ T cells and was broadly directed to multiple regions of Gag, Env, and Nef that corresponded to known and predicted major histocompatibility complex class I epitopes. Polyfunctional CD8+ T-cell responses, defined as single-cell production of more than one cytokine (IFN-γ, interleukin 2, or tumor necrosis factor alpha), chemokine (macrophage inhibitory factor 1β), or cytotoxic degranulation marker CD107a, were primed by moDC, LC, and idDC to HIV-1 Gag and reverse transcriptase epitopes, as well as to Epstein-Barr virus and influenza A virus epitopes. Thus, three major types of blood and tissue myeloid DC targeted by HIV-1, i.e., moDC, LC, and idDC, can prime multispecific, polyfunctional CD8+ T-cell responses to HIV-1 and other viral antigens
    corecore