441 research outputs found

    Land Ecosystems and Hydrology

    Get PDF
    The terrestrial biosphere is an integral component of the Earth Observing System (EOS) science objectives concerning climate change, hydrologic cycle change, and changes in terrestrial productivity. The fluxes o f CO2 and other greenhouse gases from the land surface influence the global circulation models directly, and changes in land cover change the land surface biophysical properties o f energy and mass exchange. Hydrologic cycle perturbations result from terrestrially-induced climate changes, and more directly from changes in land cover acting on surface hydrologic balances. Finally, both climate and hydrology jointly control biospheric productivity, the source o f food, fuel, and fiber for humankind. The role of the land system in each of these three topics is somewhat different, so this chapter is organized into the subtopics of Land-Climate, Land-Hydrology, and Land-Vegetation interactions (Figures 5.1, 5.2, and 5.3)

    Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux

    Get PDF
    The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology

    Satellite-based Assessment of Climate Controls on US Burned Area

    Get PDF
    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity

    Simulation Studies of Satellite Laser CO2 Mission Concepts

    Get PDF
    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions

    Does Terrestrial Drought Explain Global CO2 Flux Anomalies Induced by El Nino?

    Get PDF
    The El Nino Southern Oscillation is the dominant year-to-year mode of global climate variability. El Nino effects on terrestrial carbon cycling are mediated by associated climate anomalies, primarily drought, influencing fire emissions and biotic net ecosystem exchange (NEE). Here we evaluate whether El Nino produces a consistent response from the global carbon cycle. We apply a novel bottom-up approach to estimating global NEE anomalies based on FLUXNET data using land cover maps and weather reanalysis. We analyze 13 years (1997-2009) of globally gridded observational NEE anomalies derived from eddy covariance flux data, remotely-sensed fire emissions at the monthly time step, and NEE estimated from an atmospheric transport inversion. We evaluate the overall consistency of biospheric response to El Nino and, more generally, the link between global CO2 flux anomalies and El Nino-induced drought. Our findings, which are robust relative to uncertainty in both methods and time-lags in response, indicate that each event has a different spatial signature with only limited spatial coherence in Amazonia, Australia and southern Africa. For most regions, the sign of response changed across El Nino events. Biotic NEE anomalies, across 5 El Nino events, ranged from -1.34 to +0.98 Pg Cyr(exp -1, whereas fire emissions anomalies were generally smaller in magnitude (ranging from -0.49 to +0.53 Pg C yr(exp -1). Overall drought does not appear to impose consistent terrestrial CO2 flux anomalies during El Ninos, finding large variation in globally integrated responses from 11.15 to +0.49 Pg Cyr(exp -1). Despite the significant correlation between the CO2 flux and El Nino indices, we find that El Nino events have, when globally integrated, both enhanced and weakened terrestrial sink strength, with no consistent response across event

    New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    Get PDF
    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions

    GCM Studies on the Interactions Between Photosynthesis and Climate at Diurnal to Decadal Time Scales

    Get PDF
    Transpiration, a major component of total evaporation from vegetated surfaces, is an unavoidable consequence of photosynthetic carbon fixation. Because of limiting soil moisture and competition for solar radiation plants invest most of their fixed carbon into structural and hydraulic functions (roots and stems) and solar radiation absorption (leaves). These investments permit individuals to overshadow competitors and provide for transport of water from the soil to the leaves where photosynthesis and transpiration occur. Often low soil moisture or high evaporative demand limit the supply of water to leaves reducing photosynthesis and thus transpiration. The absorption of solar radiation for photosynthesis and dissipation of this energy via radiation, heat, mass and momentum fluxes represents the link between photosynthesis and climate. Recognition of these relationships has led to the development of hydro/energy balance models that are based on the physiological ecology of photosynthesis. We discuss an approach to study vegetation-climate interactions using photosynthesis-centric models embedded in a GCM. The rate at which a vegetated area transpires and photosynthesizes is determined by the physiological state of the vegetation, its amount and its type. The latter two are specified from global satellite data collected since 1982. Climate simulations have been carried out to study how this simulated climate system responds to changes in radiative forcing, physiological capacity, atmospheric CO2, vegetation type and variable vegetation cover observed from satellites during the 1980's. Results from these studies reveal significant feedbacks between the vegetation activity and climate. For example, vegetation cover and physiological activity increases cause the total latent heat flux and precipitation to increase while mean and maximum air temperatures decrease. The reverse occurs if cover or activity'decreases. In general climate response of a particular region was dominated by local processes but we also find evidence that plausible climate-vegetation scenarios lead to changes in global atmospheric circulation and strong non-local influences in some cases

    Sensitivity of Climate to Changes in NDVI

    Get PDF

    Sensitivity of CO2 Simulation in a GCM to the Convective Transport Algorithms

    Get PDF
    Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed
    • …
    corecore