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ABSTRACT
Convection plays an important role in the transport of heat, moisture and trace gases. In 
this study, we simulated CO2 concentrations with an atmospheric general circulation 
model (GCM).  Three different convective transport algorithms were used. One is a 
modified Arakawa-Shubert scheme that was native to the GCM; two others used in two 
off-line chemical transport models (CTMs) were added to the GCM here for comparison 
purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were 
compared to a large quantity of CO2 observation data.

We find that the simulation results are sensitive to the convective transport algorithms.  
Overall, the three simulations are quite realistic and similar to each other in the remote 
marine regions, but are significantly different in some land regions with strong fluxes 
such as Amazon and Siberia during the convection seasons. Large biases against CO2 
measurements are found in these regions in the control run, which uses the original GCM. 
The simulation with the simple diffusive algorithm is better. The difference of the two 
simulations is related to the very different convective transport speed.  

1. Introduction
Cumulus convection plays an important role in vertical transport of heat, moisture, and 
trace gases. In large-scale atmospheric models, cumulus clouds can’t be explicitly 
resolved due to their smaller scales.  Therefore parameterization methods are used to 
represent the collective effects of cumulus clouds. Various cumulus parameterization 
schemes have been developed in the past. They are widely different from each other not 
only in complexity but also in basic reasoning. Arakawa and Shubert [1974, hereafter 
AS] developed a mass-flux approach of cumulus parameterization. Since the late 1980s, 
the mass-flux approach has been adopted by most numerical weather prediction (NWP) 
models [e. g. Tiedtke, 1989; Gregory and Rowntree, 1990; Pan and Wu, 1995] and many 
climate models. Two different varieties of the mass-flux cumulus parameterization have 
been developed: the bulk and the explicit multi-plume ensemble methods. A key issue of 
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the mass-flux convection schemes is about the treatment of detrainment and entrainment. 
In recent years, this has been received a renewed attention and significant improvements 
have been achieved in some NWPs [Bechtoldet al., 2008; Derbyshire et al., 1989; de 
Rooy et al., 2013; Han and Pan, 2011; etc.].  In this study we employ the NASA’s 
Goddard Earth Observing System Version 5 (GEOS-5) GCM, which uses the relaxed AS 
scheme [Moorthi and Suarez, 1992, hereafter RAS].  Like the original AS scheme, RAS 
is an explicit multiple-entraining plume convection scheme.  

It is desirable to adequately evaluate the performance of the various convection schemes, 
since convection is so important.  However, due to the high complexity of the GCMs,   
evaluation of convection schemes may not be a straightforward job. For example, it is 
difficult, if impossible, to separate the errors due the convection from those due to other 
physical processes of the GCM.  The difficulty of evaluation may also come from the 
tuning process. The physics package of a GCM or a NWP is usually carefully tuned to
achieve better performance in such areas as the global precipitation pattern.   Therefore it 
may not be fair to evaluate different convection schemes using a model that has already 
been tuned based on meteorological variables such as the precipitation pattern or 
moisture field. 

Using trace gases to evaluate the model can be another and more objective approach. 
This is due to the fact that the trace gases are not involved in the tuning process. There 
are also large numbers of trace gas observations all over the world. Due the concerns 
about the global warming, ozone depletion and air pollution, trace gases such as CO2, O3,
CO and many others have been observed intensively during the last a few decades. Large 
quantities of trace gas observations, including in situ data and satellite and aircraft data, 
are available for use in model evaluation.  Furthermore, the advances in atmospheric 
chemistry modeling make it possible for GCMs to incorporate the trace gases as 
prognostic variables. For example, the GCM used in this study is capable of sophisticated 
atmospheric chemistry modeling. 

In this study, we use CO2 to evaluate the convective transport in a GCM. There have been 
some studies in the past that use trace gases to evaluate cumulus parameterizations using
chemical transport models (CTMs) and GCMs [Mahowaldet al., 1995; Allenet al., 1996; 
Bian et al., 2006; Folkinset al., 2006; Donneret al, 2007; Zhang et al., 2008, etc.]. 222Rn, 
CO, and O3 and some other tracers have been used in these studies for the evaluations. 
None of these studies have used CO2 for the evaluations.  We think that CO2 can be an 
even more ideal trace gas for model evaluation. This is because of the following reasons.  
The first reason is the simplicity: CO2 does not react with other chemicals and has a long 
lifetime in the atmosphere, and its sources and sinks are mainly from the earth surface. 
This is simpler than CO and O3, which react with other chemicals, such as OH, in the 
atmosphere. For CO or O3 the reaction with OH is the major sink, while the estimation or 
specification of OH distribution in models has significant uncertainty.  For CO2 there is 
no such concern. The second reason is that CO2 has a substantial amount of observations 
due to its importance in global warming process. Radon (222Rn) has long been used in 
studies of atmospheric transport due to its simplicity. But the observations of radon are 
very limited. The last reason for using CO2 to the model evaluation is the availability of 
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realistic surface flux data.  In recent decades, significant advances have been achieved in 
estimation and modeling terrestrial, oceanic, and anthropogenic CO2 fluxes. In this study, 
we use a set of CO2 flux data from the products of the NASA Carbon Monitoring System 
Flux Pilot Program (CMS FPP), as will be discussed in details in Section 3. 

In this study, we use a GCM to do CO2 simulation experiments. Three different 
convective transport algorithms are used for the experiments respectively. Three different 
convective transport algorithms were used. One is the relaxed Arakawa-Shubert scheme 
(RAS) that was native to the GCM; two others used in two off-line chemical transport 
models (CTMs), PCTM and GEOS-Chem, were added to the GCM for comparison 
purposes.  The results are verified with various observation data. The comparison of the 
simulation with observations provides information about the impact of the convective 
transport schemes and the reasons of difference in the CO2 distribution and variability. 
Note that the misfits of the simulations to the observations can be due to other reasons, 
such as turbulence transport or imperfection of the flux data, rather than the 
representation of convections.  In the following we analyze the reasons for those misfits 
or biases in the simulations.  

The purpose of this study is twofold.  One goal is to evaluate the RAS cumulus 
parameterization used in the GEOS-5 GCM through the comparison with the 
observations.  The other goal is to achieve a very realistic simulation of CO2 for NASA 
CMS FPP Program.

The outline of the article is as follows. Section 2 gives a brief description of the 
convection transport schemes. Section 3 describes the model and the setting of 
experiments. Section 4 presents the results of the experiments and the comparison with 
the observations. Section 5 addresses the sensitivity of the convection schemes and 
several issues in CO2 modeling.   Section 6 sums the results of this study.

2. The convective transport algorithms
Scheme-1: The convective transport of large-scale quantities is calculated with the large-
scale budget equations of the RAS scheme [Moorthi and Suarez, 1992]. As in the original 
Arakawa-Shubert scheme, RAS represents convection with an ensemble of cumulus 
cloud plumes. In the GEOS-5 model, there are about 30 such plumes with different 
depths. The convective transport equations for each plume are as follows.
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Here q is a large-scale variable such as a tracer mixing ratio, Mk-1/2 and Mk+1/2 are the 
cloud mass fluxes at the lower and upper edges of layer k. The subscript cu denotes the 
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contribution from cumulus convection; i denote the ith cloud plume. Dk is the detrainment 
rate, which only occurs at the top level of the plume. MB is the cloud base mass flux. � is 
the normalized cloud mass flux, and qc is the quantity inside the cloud plume. 

The cloud model consists of entraining plumes [Stommel, 1947]. In each plume, the 
large-scale quantities such as moisture and other tracers are sucked into the cloud from 
cloud base layer and from the entrainment of the environment air at each layer. These 
large-scale quantities are brought to the top of the plume and then release there. The 
scheme assumes that detrainment only happens at the top of each plume and there is no 
lateral mixing with the environment air below the top layer.

Scheme-2 is a bulk diffusive convection transport scheme used by an offline CTM, the 
PCTM, which has been used for a number of CO2 modeling studies [Kawa et al, 2004; 
Baker et al., 2006]. The convective transport equation is as follows.
�qk

�t
��

�
��

��

�
	�

cu

�
g
�pk

Mk�1/ 2(qk�1 � qk ) � Mk�1/ 2(qk � qk�1)� � (2)

Where M is the total cloud mass flux from the GCM and q is the tracer’s mixing ratio on 
the grid. This equation implies that the tracers in the cloud and the environment are well 
mixed and the mixing ratios are represented with the resolved variable values. The 
function of the cloud mass flux is to bring the air from the lower layer to upper layer by 
the clouds, in the mean time the same amount of subsidence of environmental air occurs 
from the upper layer to lower layer. This kind of overturning of air causes net change of 
tracer mass between the adjacent layers, so this scheme is typically a diffusive transport 
scheme.

Scheme-3 is a convective transport scheme used in an offline CTM, the GEOS-Chem 
model [Bey et al., 2001]. GEOS-Chem CTM has been used for a wide range of 
atmospheric chemistry modeling studies. This convective transport scheme is originally 
from Lin [1996]. It is also a bulk scheme that considers the ensemble of cumulus clouds 
as one cloud model. The cloud mass flux, entrainment and detrainment are from the sum 
of the quantities of all plumes of the GCM. 
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Where c
kuq and is the averaged variable for all plumes. E and D are entrainment and 

detrainment rates. (3.1) is a tendency equation for the resolved tracer.  (3.2) and (3.3) are 
the conservation requirements for total mass of the tracer and air in the layer. 

The offline scheme-2 and scheme-3 were implemented into the GEOS-5 GCM as 
alternatives to the convective transport part of the RAS cumulus parameterization. They 
are used for convective transport of the trace gases only, not for that of moisture and heat. 
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Therefore the modeling of meteorological fields including the cloud mass flux and 
detrainments are not affected by changing the RAS to scheme-2 or scheme-3.

3. The model and experiments
3.1. Description of the model
The GEOS-5 atmospheric general circulation model (AGCM) is a part of the Goddard 
Earth Observing System Assimilation System [Rienecker et al., 2008].The GCM uses a 
semi-Lagrangian finite-volume dynamic core as described by Lin [2004] and a 
sophisticated physics package. As mentioned previously, the native cumulus 
parameterization is the relaxed Arakawa-Schubert scheme [Moorthi and Suarez, 1992]. 
We use the same version of GCM as used in the NASA’s Modern Era Retrospective 
Analysis [MERRA, Bosilovich et al., 2011]. The model resolution for this study is 
2�x2.5�in the horizontal (lat/lon) and 72 levels in the vertical.

The GEOS-5 GCM is capable to do atmospheric chemistry modeling. Several 
atmospheric chemistry models, ranging from a simple parameterized chemistry model to 
a sophisticated full-chemistry model, are incorporated in the GCM. In this study we 
simulate CO2 and CO with the parameterized chemistry model but only focus on the CO2
simulation in this paper.

A “replay” method is used here for the GCM runs. In the replay run, the winds, 
temperature, moisture, and pressure fields are replaced with the MERRA reanalysis data 
every six hours, so the meteorological fields keep close to the analysis status. This is 
important for a realistic simulation of the synoptic and diurnal variations of the trace 
gases. The replay runs use an incremental analysis update (IAU) procedure to ensure that 
the shock due to insertion of the analysis data is small and the tracer mass is sufficiently 
conserved. 

3.2. The CO2 fluxes
Substantial advances have been made in recent decades in the estimation and the 
modeling of CO2 sources and sinks on land and oceans. In this study, we use the land 
and ocean surface CO2 flux data from the products of the NASA Carbon Monitoring 
System Flux Pilot Program, and the fossil fuel emission data from the Oak Ridge 
National Laboratory (ORNL).  

The land surface biosphere CO2 fluxes and biomass-burning emissions are from a 
diagnostic terrestrial carbon cycle model, the CASA-GFED3 model. The CASA model 
(Carnegie-Ames-Stanford-Approach) is originally from Potter et al. [1993], with 
divergent development since Randerson et al. [1996]. CASA is a light use efficiency type 
model, which estimates the net primary production (NPP) due to the photosynthesis of 
vegetation. It uses satellite data to derive fractional absorption of solar radiation by the 
vegetation canopy (FPAR). FPAR is derived from NDVI [Tucker et al., 2005] using the 
approach of Los et al. [2000].  The surface temperature and precipitation data from the 
MERRA reanalysis drive the CASA model to produce the monthly NPP and 
heterotrophic respiration (Rh). The CASA-GFED3 (Global Fire Emission Data) model 
also estimates the biomass burning emissions by combining the satellite information on 

s 5



fire activities and vegetation productivity using the fire parameterization method of der 
Werf et al.[2006,2010]. The fire emission was disaggregated from monthly to quasi-daily 
spans using the eight-day MODIS MYD14A2 active fire product.

The monthly NPP and Rh data are then used to produce the 3-hourly biosphere NEE (net 
ecosystem exchange) data for the CO2 simulation of this study. The method for doing this 
is from Olsen and Randerson [2004]. The 3-hourly surface temperature and short wave 
radiation data of the MERRA meteorological data are used to partition the monthly total 
NPP and respiration into the 3-hourly NEE. Therefore the 3-hourly NEE has diurnal and 
synoptic variations because of the use of meteorological analysis data. As will be shown 
below, the simulated CO2 diurnal and synoptic variations are quite realistic compared to 
the observations. 

The oceanic CO2 flux data is from the NASA Ocean Biogeochemical Model (NOBM) 
[Gregg et al, 2003; Gregg and Casey, 2007]. NOBM is a three-dimensional ocean model 
with coupled circulation/biogeochemical/radioactive processes. The biogeochemical 
process model contains four phytoplankton nutrient groups, a single herbivore group, and 
three detrital pools. The surface spectral irradiance is derived from the ocean-atmosphere 
spectral irradiance model [Gregg and Casey, 2009]. The carbon cycling involves 
dissolved organic carbon, phytoplankton, herbivores, carbon detritus, and the exchange of 
CO2 with the atmosphere. The NOBM was forced by the wind stress from the MERRA 
analysis. Other input includes soil dust (iron), ozone, and atmospheric CO2. The results of 
ocean CO2 fluxes were evaluated globally and regionally with the data of Takahashi
[2009], which is based on the in situ observations.  The global total modeled CO2flux is 
about 2.3% more negative than that of the Takahashi product, indicating a slightly more 
oceanic uptake in the model than that estimated from in situ data.  

The monthly fossil fuel CO2 emission data are from the Carbon Dioxide Information 
Analysis Center (CDIAC) [Andres et al., 2011]. The fossil fuel CO2 inventories of 21 
countries, which account for 80% of global total emissions, were compiled. A Monte 
Carlo approach was used as a proxy for all remaining countries. 

The above CO2 flux data are from the various sources, so a slight scaling is necessary to 
keep the global total fluxes consistent with the increasing rate of the atmospheric CO2.
We first did a test run for several years with the original fluxes. The results show a 
slightly excessive trend compared to the NOAA’s in-situ data. The trend is about 0.3 
ppm/year more than the observed at SPO or MLO. The bias is small, but it is desirable to 
remove it in order to compare the multi-year simulation results with the observations. 
This is achieved by a slightly scaling the hourly terrestrial NEE data. On land the NEE 
data has significant diurnal variation. Usually it is negative in daytime and positive in 
nighttime. We reduced the positive NEE by about 2%. The change of NEE is quite small, 
but the effect of scaling accumulates with time and is able to erase the positive bias in the 
trend.

Fig.1 is the 2003-2010 monthly and yearly global totals of the component CO2 fluxes and 
the sum. The monthly map shows that the global total of land surface NEE has a big 
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seasonal variation with about -2.3 Pg C/month in northern summer and 0.5 Pg C/month in 
northern winter. The global totals of oceanic flux and fossil fuel emissions do not show 
much seasonal variations. The biomass burning emission total has seasonal variation, 
mostly peaked in September to October in tropics. The map of yearly total CO2 fluxes 
shows that the ocean and biomass burning are about -2 Pg C and 2 Pg C each year 
respectively. The total fossil fuel emissions increase from 7.5 Pg C/year in 2003 to 8 Pg 
C/year in 2010. The yearly total terrestrial NEE has large interannual variability. It is -3
Pg C/year in 2007 but -5 Pg C/year in 2009. Mainly due to the variation of NEE, the sum 
of the global total CO2 fluxes shows significant interannual variability, ranging from 2 Pg 
C/year in 2003 and 2009 to about 5 Pg C/year in 2007. So both the seasonal and 
interannual variability of the global total surface fluxes of CO2 seem mainly caused by 
the variations of the CO2 exchanges between the land biosphere and atmosphere. 
Meanwhile, the huge amount of fossil fuel emissions, about 8 billion tons of carbon a 
year globally, is the major reason for the rise of the atmospheric CO2 concentration. 

Three multi-year runs of the GEOS-5 GCM with the CO2 surface fluxes described above 
were conducted, each from 2003 to 2010. The first run is a control run that utilizes the 
original code of the GCM and the RAS convection scheme. The second run, defined as 
EXP2, utilizes the bulk diffusive convective transport scheme (Scheme-2). The third run, 
EXP3, utilizes the Scheme-3, the scheme used by GEOS-Chem CTM. As mentioned 
previously, a “replay” technique is used for the model runs. The meteorological fields are 
renewed to the analysis data every six hours so that the winds and temperature can be 
considered as approximately realistic. The model was spun up for several years before it 
started runs from January 1, 2003. The difference of the initial value of CO2 from the 
observation at Mauna Loa (MLO) is about 14.9 ppm. This constant value is subtracted 
everywhere and anytime in the post-processing of the model output. No other artificial 
adjustments are applied in the post-processing. 

4.  Results
4.1. Inter-comparison of the three simulations
Fig.2 is a comparison of the July monthly mean surface CO2 of the three runs with the 
different convective transport schemes. The model output every three hours. The monthly 
means here are full average across day and night. It is found that the surface CO2 of 
EXP3, which uses the convective transport scheme of the GEOS-Chem CTM, is very 
similar to that of the control run. The differences between EXP3 and Control are small. 
However, the EXP2 surface CO2 is quite different from that of the Control. In the 
northern high latitude land regions, where it is a vast sink for CO2 in July due to uptake 
of the vast boreal forests, the EXP2 simulates lower CO2 concentration than the Control 
and EXP3.

Fig.3 shows the monthly mean vertical profiles of CO2 and CO in several different places 
and in different seasons. Again, we see that the vertical profiles of EXP3 and Control are 
well coincident each other, while the EXP2 vertical profiles are different. We have 
checked the instantaneous vertical profiles in many places all over the world and found 
that the EXP3 and Control are also coincident each other with only very small 
differences. Therefore, it can be concluded that the convective transport of Scheme-3 is 
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equivalent to that of the RAS scheme when it uses the total cloud mass flux and 
detrainment from RAS. This is not surprising since Scheme-3 contents the basic budget 
equations which apply for any mass-flux convection schemes. Therefore when the input 
is the RAS produced cloud mass flux and detrainment, the convective transport of 
Scheme-3 should be equivalent to that of the control run.   

Now we only need to evaluate the results of Control and EXP2. Fig.3 indicates that the 
tracer vertical gradient of Control run is much weaker than that of EXP2. This can be 
more clearly seen in the comparison of the CO profiles, since CO fluxes are all positive 
but CO2 fluxes can be positive or negative. The CO profiles show significant difference
of the vertical gradient of the two simulations. The much weaker vertical gradient of the 
Control run indicates a much fast convective transport of the tracers by using the RAS 
scheme than the bulk diffusive scheme (Scheme-2). The slower convective transport of 
Scheme-2 explains why the simulated surface CO2 in the boreal forest regions is 
significantly lower than that of the Control as show in Fig.2. The strong sink there during 
the summer absorbs CO2 from the atmosphere. With a weaker convective mixing, the 
CO2 concentration near the surface is lower than in the control run. 

Fig.4 shows the monthly mean differences of the control and EXP2 runs for the simulated 
CO2 on the surface and 300 hPa. In northern winter, the major difference on the surface is 
in the Amazon rain forest region of the South America, where EXP2’s surface CO2
concentration is significantly higher than that of the Control. The maximum difference 
can be more than 10 ppm. A smaller positive difference is also found in Indonesian 
region. On 300 hPa the differences are small. In July, the major difference is in the 
northern hemisphere high latitude boreal forest regions. The surface CO2 of EXP2 is 
significantly lower than that of Control. The maximum difference is in about -7 ppm in 
Siberia. In North America’s middle to high latitudes, the monthly mean surface CO2 of 
EXP2 is also lower than that of the Control, but the magnitude of the difference is only 1 
to 3 ppm. On the vast ocean regions, the difference is quite small. On 300 hPa the 
difference is also mainly in Siberia but sign of the difference is reversed from that on the 
surface. The EXP2’s CO2 is higher than the control run, although the magnitude of the 
difference is not large. Thus, the surface CO2 differences of the two runs are in those land 
regions where both the surface fluxes and convection activities are strong. On the oceans 
and arid land regions, where the CO2 flux is very small in magnitude, the differences are 
insignificant.  

It is desirable to verify which simulation run, the Control or EXP2, is more realistic in 
those regions where the simulated CO2 is significantly different. 

4.2. The evaluation
Various CO2 observation data are used to evaluate the model results, which include the 
conventional flask and tower observations of the NOAA Earth System Research 
Laboratory (ESRL), the ground-based observations of the Total Carbon Column 
Observing Network (TCCON), and the ACOS-GOSAT satellite observing xCO2 data 
(Atmospheric CO2 Observations from Space retrievals of the Greenhouse gases 
Observing Satellite).
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4.2.1. Comparison to the NOAA ESRL’s flask data
The ESRL’s cooperative air sampling network is an international effort to collect sample 
air regularly at many sites of the world and to analyze the concentration of greenhouse 
gases in the laboratory. The flask data of surface CO2 data [Conway et al., 2011] provide 
the collecting time of the samples, which is mostly in daytime especially noon or 
afternoon local time at each site. Since CO2 concentration has large diurnal variations on 
land sites, the concentrations of the collected air samples do not represent the daily mean 
values and can be much lower. Therefore it is not appropriate to directly compare the 
monthly mean of the flask and model data. In the model runs, we output the results every 
three hours. We select the results at the similar local time, as in the flask sample event 
time, and then calculate the monthly mean. Fig.5 shows the difference of the two 
methods in calculating the monthly mean model data at HUN. The one with the selected 
local sample time as mentioned above is well consistent with the observed flask data. But 
the other one (dashed line) with the direct monthly mean model data is far from realistic. 
In the summertime, it is much higher than that of the flask data. Fig.5 indicates the 
importance of taking into account of the diurnal variations in CO2 modeling. The use of 
hourly CASA-GFED3 NEE data in the experiment makes it possible to simulate the 
diurnal variation and covariance of terrestrial fluxes with PBL diffusion. If using a 
monthly NEE flux data, we cannot attain the right diurnal variation.

Fig.6.1 and Fig.6.2 are the comparison of monthly CO2levels at a number of flask 
observation sites in southern and northern hemispheres respectively. In the southern 
hemispheric sites, the curves of simulated CO2 are very well consistent with that of the 
observed, and the differences of Control and EXP2 runs are negligible. In the northern 
hemispheric sites in summer months, the simulated monthly CO2 concentrations are also 
well consistent with the observations. But in winter months, the simulated values are 
mostly higher than the observed by a few ppms in many high latitude sites such as HUN, 
BAL, BRW, and ALT. We will analyze the reason for this overestimation in northern 
winter below. In general, the comparison with the flask data shows the online simulations 
are quite successful.

The differences of surface CO2 of the Control run and EXP2 at the ESRL flask 
observation sites are not large. In northern summer EXP2 simulates slightly lower CO2 at 
the northern high latitude flask. The differences are only 1-2 ppm. However, it must be 
pointed out that the ESRL flask observation sites are mostly in remote regions where the 
surface CO2 fluxes are weak. Observations are lacking in the strong source and sink land 
regions such as in Amazon or Siberia. Therefore the flask data does not provide 
information for verifying which simulation run, the Control or EXP2, is more realistic in 
these strong source regions. Fortunately, we have some tower observations in the strong 
source regions such as in Tapajos (Amazon region).

4.2.2. Comparison to the tower observations
The CO2 data of tall tower observations are particularly useful for evaluating the 
simulation results. The tower observations are high frequency for day and night. So they 
can be used to verify the diurnal variations of the simulated CO2. Some of the towers are 
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as tall as 400 meters. That height covers the 4 lowest levels of the GEOS-5 model. 
Therefore tower observations can be used to verify the model vertical profiles, as will be 
shown below.  Another reason why the tower observations are particularly useful to this 
study is the locations of the towers. Unlike most flask observations, which are located in 
remote sites where CO2 flux is weak or does not exist, the tower observations are mostly 
in land regions such as North America and Europe, where the terrestrial sources and sinks 
are not weak. One particularly important tower observation data is located at the Tapajos 
national forest (2.86S, 54.96W) of the Amazon region. The Amazon’s vast rain forests 
are the “lungs” of the Earth. Realistic estimation of the CO2 sources and sinks in the 
Amazon region can be crucial for estimation of the global CO2 budget. In this section, we 
use the tower observations at Tapajos of the South America and WLEF and WBI of the 
North America to verify the simulation results. The tower data at AMT, SCT, WKT and 
others of the North America are also good data. But the differences of the two 
simulations at these sites are not very significant, so we will not show here.

The Tapajos tower observing data is from the ONRL DAAC [Hutyra et al., 2008].We use 
the data at the level of 50 meters to compare to the model’s first level above the ground.
Fig.7 shows the observed and simulated hourly CO2 mixing ratio at Tapajos in March
2003 and March 2005. The amplitude of diurnal variation of the observed CO2 is huge, 
often exceeding 50 ppm. The surface layer CO2 reaches minimum in afternoon and 
maximum in late night in local time. A characteristic is that the building up of CO2
concentration in nighttime is very large in the observations, indicating the coupling effect 
of the high emission of CO2 and low vertical transport of convection and turbulence in 
the rain forest nighttime. The Control run simulates lower CO2 mixing ratio especially at 
night. The EXP2 simulated surface CO2 is higher than the Control, although the 
amplitude of diurnal variation is still smaller than the observed.

The monthly mean Tapajos CO2 mixing ratio at 50m height is shown in Fig.8. The 
monthly means here include the average of day and night data. In the rain season from 
December to April, the EXP2 simulation is closer to the observed, and the Control 
simulation is too low, with a difference of about 5 to 10 ppm. This difference is seen in 
Fig.4, which shows that the EXP2 surface CO2 in February is higher than the Control in 
Amazon region by the similar amount. According to the Tapajos data, we can roughly 
conclude that the Control run simulated surface CO2 in Amazon region is too low, while 
the EXP2 is more realistic. Fig.8 also shows that in the dry season, which is from June to 
September, the simulated CO2 of both the Control and EXP2 is much lower than the 
observed. This indicates that the CASA model may overestimate the uptake of the 
rainforest in the dry season, which should be improved in the future.

The significant difference of the two simulations in Tapajos must be due to the different 
convective mixing speeds of the RAS and Scheme-2. This can be seen in Fig.9 that 
shows the evolution of vertical profiles of CO2 for the two runs. The Control run’s 
vertical profile is almost homogeneous above the cloud base (about 300-500 m), while 
the EXP2 profile shows a gradient in the vertical. This clearly indicates that the RAS 
scheme’s convective mixing is much stronger, which sends the emitted CO2 from the 
cloud base layer to higher levels. As a result, the building up of surface CO2 in nighttime 
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is too weak. EXP2’s build up at nighttime is due mostly to its slower convective 
transport. 

Next we analyze the comparison of the simulations to the tower data at LEF (45.94N, 
90.27W) and WBI (41.71N, 91.35W). These sites are in the Midwest of the United 
States, and the towers are about 400 meters of height. Fig.10 shows the hourly-observed 
CO2 of the towers at the height of the model’s lowest level at these two sites during the 
summer season. It is found that the diurnal and synoptic variations of the observed CO2
are simulated quite well by the two simulations. The simulated diurnal variation 
amplitude is similar to the observed at these sites. The simulations also capture the day-
to-day fluctuations of the observed CO2.

The realistic simulation of the diurnal and synoptic variations at these sites can be mainly 
due to the use the hourly terrestrial CO2 flux data. Fig.11 shows the evolution of daily 
mean NEE and observed and simulated surface CO2 at WBI in July 2010. The synoptic 
variation of the simulated CO2 is consistent with the observed CO2, and the up and down 
of day-to-day CO2 concentration is correlated with the synoptic variation of the NEE 
data. Therefore the 3-hourly NEE data of CASA-GFED3 must include realistic synoptic 
variations so that the simulated CO2 synoptic variation looks realistic. The realistic 
simulation of the synoptic variation indicates that the MERRA analysis, which is used in 
calculating the 3-hourly NEE and used in the online replay runs, must be quite realistic. 

The difference of EXP2 and Control runs at LEF and WBI can be seen more clearly in 
the vertical profile map of Fig.12, which shows the July and January monthly mean 
vertical profiles of CO2 from the surface to 2000 m of height. The tower’s heights are 
about 400 m, which covers the lowest four levels of the GCM, so the tower data can be 
used to compare with the simulated profiles at least for these levels. In July, the Midwest 
of the US is a sink region due the uptake of the forests and crops, and is also in 
convection season. Fig.12 shows that the EXP2 CO2 is a 2-3 ppm lower than the 
Control’s in the levels below 1500 m at both LEF and WBI. The profile curves of the two 
simulations are similar to the tower observed in the near surface 400 m layer, but the 
EXP2 profiles seem consistently more close to the tower data. It is also noticed at WBI, 
where it is in a corn field region in the mid-western US, the simulated surface CO2 of 
both the control and EXP2 runs is higher than the observed. It is possible that the CO2
sink there is somewhat underestimated in the CASA-GFED3 terrestrial flux data.  

In January, the profiles of the two runs have no difference since there is no convection 
activity in winter. From Fig.12 we noticed a phenomenon that compared with the tower 
observations, there is a positive bias in the simulated CO2 near the surface. On the surface 
layer the bias is about 5-10 ppm. But the bias decreases with height rapidly. Therefore 
such positive bias, which is also found in many other flask sites as shown in Fig.4, seems 
only exist in a very shallow layer near the surface. We will discuss this below after 
comparing to the observed column mean CO2.
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4.2.3. Comparison to the TCCON data
The TCCON is a network of ground-based Fourier transform spectrometers that record 
direct solar spectra [Wunch et al., 2011]. The TCCON xCO2 data were obtained from the 
TCCON Data Archive operated by the California Institute of Technology. The observed 
data were processed from event data to hourly data. The model simulated column-mean 
CO2 data were calculated from the 3-hourly output using an air mass weighted averaging 
method. 

Fig.13 and 14 are some comparisons of the observed and simulated xCO2 at Park Falls 
(45.94N, 90.27W) and Bialystok (53.23N, 23.03E). The two sites are in North America 
and Eastern Europe respectively. Fig.13 shows the seasonal variations of xCO2 at the two 
sites in some years. At Park falls, the seasonal variations of the TCCON observed xCO2
and the simulated xCO2 are similar to each other, both highest in April to May and lowest 
in August to September. The xCO2 seasonal variations at Bialystok are also simulated but 
in summer months the simulated xCO2 is higher than the observed by about 2 ppm. This 
positive bias may indicate there is an underestimation of CO2 sink in Eastern Europe in 
summer. 

Fig.14 shows the diurnal and synoptic variations of xCO2 at Park Falls. The TCCON data 
is only for daytime but the simulated xCO2 is continuous. The diurnal variation of the 
simulated xCO2is small, only about 1-2 ppm, but the day-to-day synoptic variation can be 
large. From Fig.14, the up and down of synoptic variations of the observed xCO2 are 
simulated quite well. The xCO2difference of the two simulations is small at the location 
of Park Falls. The EXP2’s xCO2 is slightly lower than the Control’s. It is interesting to 
find that the synoptic variation is different from year to year. For example, the synoptic 
variation is large in year 2005 summer and 2006 summer but is quite small in 2007 
summer. The models also capture this supporting our confidence in the synoptic weather 
simulation and underlying CASA fluxes.

4.2.4. Comparison to the ACOS-GOSAT data
The ground-based and aircraft-observed CO2 data are very useful. However, they are too 
sparse in spatial distributions. Due to practical reasons, observations in some important 
source and sink regions such as the tropical rain forest and the northern boreal forest 
regions are scarce. Satellite measurements can be a solution for global coverage of CO2
observations. In 2009, the Greenhouse gases Observing Satellite (GOSAT) successfully 
launched, which uses the TANSO-FTS instrument (thermal and near infrared sensor for 
CO2 observations-Fourier transform spectrometer) [Kuzeet al, 2009; Yokotaet al, 2009]. 
After the launch, the NASA Atmospheric CO2 Observations from Space (ACOS) team 
joined the GOSAT team in analyzing GOSAT observations. The goal is to retrieve the 
column-averaged dry-air mole fraction of CO2, called xCO2. There have been several 
versions of the ACOS-GOSAT products. The version we used for this study is the ACOS 
v2-10 [Osterman et al., 2012; O’Dell et al., 2012]. 

The model-simulated 3-hourly column mean CO2was calculated from the high frequency 
output of the simulation runs. Since the GOSAT observation is always at about 1:00 pm 
of the local sun time, we picked up the model data at the similar local time for each 
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longitude as the daily data, and then calculate a monthly mean for the xCO2. In this way, 
the timing of the observation data and model data are consistent. 

Fig.15.a and b show the ACOS-GOSAT and the simulated xCO2in July 2009 and July 
2010 respectively. The major difference of the Control run and the ACOS-GOSAT is in 
the northern hemisphere high latitude land regions. The Control run’s xCO2 in these 
boreal forest regions where there are major sinks of CO2 in July are apparently 
overestimated (i.e., not enough of a sink). The maximum bias is about 2-3 ppm in Siberia 
region in July monthly mean. EXP2’s xCO2 is closer to the ACOS-GOSAT data in these 
regions. This comparison is particularly interesting. The vast Siberia boreal forest region 
lacks ground observations, and the GOSAT satellite provides precious data over the 
region for verification of the model results. The comparison to ACOS-GOSAT data 
confirms that the Control run has a big positive bias there, while EXP2 performs much 
better. While this does not necessarily confirm that the EXP2 convection is correct, it is 
suggestive that EXP2 matches the GOSAT data better without requiring a correction to 
the surface fluxes to bring it into agreement.

This difference in column CO2 can be due to a combination of the vertical and horizontal 
transport. In July, the boreal forests have strong sinks of CO2; therefore the CO2
concentration in lower troposphere is lower than that in the upper troposphere, as shown 
in the vertical profile at Siberia in July (see Fig.3). The RAS scheme’s convection mixing 
is faster than the diffusive convective transport scheme, so that the simulated CO2
below700 hPa in Control run is higher than that of EXP2, while above 700 hPa it is lower 
than EXP2. In upper troposphere the winds are stronger and horizontal mixing is strong, 
which compensates for the loss of CO2 due to the convective transport to lower 
troposphere. The combination of vertical and horizontal transport makes the difference of 
xCO2 in the two simulation runs. 

The ACOS-GOSAT data does not show many records in Amazon region in northern 
winter due to the thick cloud cover in raining season there, so we do not know which 
simulation run is more realistic in xCO2 in the Amazon. 

5. Discussion
5.1. The lack of lateral diffusion - a possible reason for the overly-fast 
convective mixing in control run
The control run of this study shows significant biases in some strong flux regions. In the 
northern high latitude forest regions such as the Siberia, there is a significant positive 
CO2 bias in summer. In the South American tropical forest region, there is a negative 
CO2bias in the wet season. As analyzed in the previous section, these biases may both be 
explained by the GCM having overly-strong convective mixing at these times. In Siberia, 
the RAS convection may transport too much CO2 mass away from the surface where it is 
a strong sink for CO2, so that there is a positive bias. In Amazon, the negative bias is
mainly caused by not enough nighttime buildup of CO2, which is also due to a too-strong 
convective mixing.
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The overestimation of convective mixing with the RAS scheme has been known for a 
long time. Allen et al. [1997] found that the RAS convection scheme tends to move 
tracers from the planetary boundary layer to the upper troposphere directly, which causes 
unrealistic “C-like” profiles of 222Rn and an overestimation of CO in tropical upper 
troposphere in their offline experiments with the GEOS-1 DAS data. They further 
evaluated the deep convective mixing with the ISCCP (International Satellite Cloud 
Climatology Project) data, and found the frequency of deep convective mixing appears 
overestimated and the vertical extent of deep convection in tropics is underestimated in 
the GEOS-1 DAS, which uses RAS convection scheme. Folkins et al. [2006] also find 
the too-shallow deep convection with RAS scheme in GEOS-3 DAS. In a recent study 
about sensitivity of the parameters in RAS scheme on CO simulation, Ott et al. [2011] 
find that the boundary layer tracers can suddenly appear near the tropopause during a 
single time step. Our finding that the RAS overestimates the convective mixing is 
consistent with these former studies.

The comparison of the RAS scheme and the bulk diffusive scheme (Scheme-2) in the 
CO2 simulations in this study may indicate that lack of lateral mixing between the 
cumulus plumes and the environmental air in the RAS scheme is an important reason for 
the overestimation of convective mixing. In the RAS scheme, detrainment is set to 
happen only at the top of each plume, and there is no lateral diffusion between the plume 
and the environment air. Therefore there is no any leaking of the tracers from the plume 
to environment during the convective transport except at the plume top, no matter how 
tall the plume is. That means that the tracers can directly transport from the cloud base to 
upper troposphere through the chimney-like tall plumes. This no-leaking assumption 
could be a reason for the overly efficient convective mixing.  

The no-leaking assumption may not be consistent with the cumulus observations in 1980s 
and 1990s. Raymond and Blyth [1986] and Taylor and Baker [1991] have shown that 
detrainment can occur anywhere between cloud base and top. Based on such 
observations, Raymond and Blyth [1986] proposed a “bouncy sorting” model, which was 
used by the cumulus parameterizations of Kain and Fritsch [1990] and Emanuel [1991]. 
In the bulk mass-flux cumulus parameterization schemes of Tiedtke [1989] and Gregory 
and Rowntree [1990], a lateral mixing detrainment term is also incorporated to represent 
the effect of lateral diffusion at the cloud edge. In recent years, it is increasingly clear that 
correct representation of the lateral entrainment and detrainment is of key importance in 
cumulus parameterizations [de Rooy et al., 2011; Bethtold et al., 2008; Derbyshire et al.,
2011; etc.].It is not clear yet whether the multi-plume mass flux schemes such as RAS 
can be improved by introducing the lateral diffusion detrainment.

The simple diffusive convective transport scheme (Scheme-2) that is used in EXP2 
assumes the tracer gases in the clouds and the environment are totally mixed. This is the 
opposite extreme to the no leaking scheme. The EXP2 run shows significant 
improvement in the simulated CO2, which must be due to the slower convective 
transport. However, the real situation in cumulus convections must be between the no-
leaking and the totally mixing between clouds and environment. Therefore the simple
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diffusive scheme is not the final solution but only a fixer to the convective transport of 
the current GCM.

5.2. Are the CO2 sources overestimated or there is a missing sink?
The comparison of surface CO2 of the multi-year runs with the flask observations (Fig.6)
indicates that in the northern hemisphere winter, there exists a positive bias in many land 
observation locations. The magnitude of the bias varies from place to place, year to year. 
Sometimes the bias can be as large as 5-10 ppm in monthly means. The simulated surface 
CO2 in summer is close to the flask observations. Therefore, in taking the annual mean, 
the inter-hemispheric gradient of the simulated surface CO2 must be larger than the 
observed because of the overestimation in northern hemisphere winter surface CO2(figure 
not shown).

However, it turns out that the positive bias only exists in a very shallow layer near the 
surface, not in the total column. As shown in the monthly mean vertical profiles of the 
model with the tall towers at LEF and WBI (Fig.12), the positive bias is only in a shallow 
layer near the surface. In the comparison of the simulated xCO2 with the TCCON 
observations (Fig.13), there is no such positive bias in the simulated xCO2 in northern 
winter at Park Falls (North America) and Bialystok (Europe), which indicates that there is 
no such positive bias in the simulated column total CO2 mass. Therefore the total CO2
flux in northern hemisphere is not overestimated. The shallow bias is more likely just due 
to an underestimation of the turbulence transport near the surface in the GCM.

The above fact indicates that only using the near surface observations to constrain the 
CO2 sources is insufficient. We can’t make a conclusion based only on the surface 
observations that the positive bias in inter-hemispheric gradient of the simulated surface 
CO2 is due to errors in the emissions. The observations of xCO2 can be more useful to 
verify whether the total fluxes are overestimated or not.

6. Summary
In this study, multi-year CO2 simulations are conducted with the GEOS-5 GCM and with 
the land and oceanic surface CO2 flux data of the CASA-GFED3 and NOBM as well as 
the ORNL’s fossil fuel emission. Three convective transport algorithms are used for the 
simulation experiments. The results are compared with the various observations including 
the near surface and the GOSAT satellite observations. The major conclusions are as 
follows:
� CO2 simulations are sensitive to representation of convective transport. Significant 
differences are found in online simulations that use three different convective transport 
algorithms. 
� The multi-plume mass flux convection scheme of the GCM tends to overestimate the 
convective mixing speed, which leads to large biases in land regions with strong 
terrestrial fluxes during the convection seasons. 
� Overall the simulations are quite realistic, especially the one with a simple diffusive 
convective transport scheme. Due to the advances in the surface flux estimation and in 
the global observations, CO2 can be a useful tracer for evaluation of the atmospheric 
models.
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� The lack of lateral diffusion between the cumulus plumes and the environment air can 
be an important reason for the too fast convective mixing with the AS type’s cumulus 
parameterizations.
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Figure1. Time series of monthly (upper panel) and yearly (lower panel) global total CO2
fluxes for the terrestrial biota, biomass burning, oceanic fCO2, fossil fuel combustion and 
the sum. The unit is Pg C/year.
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Figure 2. Simulated monthly mean surface CO2 concentration in July 2003 for the 
Control run and EXP2, EXP3 runs, respectively. 
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Figure 3.Monthly mean vertical profiles of CO2 and CO at some land places.
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Figure 4. Difference of monthly mean CO2 at surface and 300 hPa (EXP2 – Control) in 
February and July 2009. Unit is ppmv.
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Figure 5.Comparison of monthly mean surface CO2at HUN using two methods. Oneis 
calculated from the daily means (dashed green line). The other is calculated from the 
daily values at local time afternoon (solid green line). The red line is from the flask 
observations.
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Figure 6. Time series of monthly mean surface CO2 for 2003-2010 at a number of flask 
sites. The upper six and lower six are in the southern and northern hemispheres 
respectively.
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Fig. 7. Time series of the simulated and the tower observed hourly surface CO2at Tapajos 
in raining season. The observed CO2 is from the tower data at 50 m level that is 
consistent to the lowest model level. 

s 26



Figure 8. Time series of monthly mean CO2 of the simulated and observed at Tapajos.
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Figure 9.  Time evolution of vertical profiles of CO2 at Tapajos for Control (upper panel) 
and EXP2 (lower panel) runs respectively.
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Figure 10. Time series of hourly surface CO2 at LEF and WBI. The simulated CO2 is at 
the lowest model level (52 m), and the observed data is interpolated to the similar height. 
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Figure 11.  Daily mean CO2 (upper panel) and daily mean NEE (lower panel) at WBI.
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Figure 12.  Monthly mean vertical profiles of CO2 at LEF and WBI. Upper: in July, 
lower: in January.
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Figure 13. Time series of the TCCON xCO2 and simulated xCO2 at Park Falls (45.94N, 
90.27W) and Bialystok (52.23N, 23.03E).
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Figure 14. July time series of the simulated and the TCCON observed xCO2 at Park 
Falls. 
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Figure 15a. Comparison of the ACOS-GOSAT observed xCO2 with the simulated 
xCO2of the Control and EXP2 runs in July 2009.
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Figure 15b. Same as the Fig.15a but for July 2010.
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