114 research outputs found

    On Negative Outcome Control of Unobserved Confounding as a Generalization of Difference-in-Differences

    Get PDF
    The difference-in-differences (DID) approach is a well known strategy for estimating the effect of an exposure in the presence of unobserved confounding. The approach is most commonly used when pre-and post-exposure outcome measurements are available, and one can assume that the association of the unobserved confounder with the outcome is equal in the two exposure groups, and constant over time. Then, one recovers the treatment effect by regressing the change in outcome over time on the exposure. In this paper, we interpret the difference-in-differences as a negative outcome control (NOC) approach. We show that the pre-exposure outcome is a negative control outcome, as it cannot be influenced by the subsequent exposure, and it is affected by both observed and unobserved confounders of the exposure-outcome association of interest. The relation between DID and NOC provides simple conditions under which negative control outcomes can be used to detect and correct for confounding bias. However, for general negative control outcomes, the DID-like assumption may be overly restrictive and rarely credible, because it requires that both the outcome of interest and the control outcome are measured on the same scale. Thus, we present a scale-invariant generalization of the DID that may be used in broader NOC contexts. The proposed approach is demonstrated in simulations and on a Normative Aging Study data set, in which Body Mass Index is used for NOC of the relationship between air pollution and inflammatory outcomes

    Exploring the predictive value of the evoked potentials score in MS within an appropriate patient population : a hint for an early identification of benign MS?

    Get PDF
    This study was supported by the Italian Ministry of Health, Ricerca Corrente funding plan to the institutional research activity of the Scientific Institute S. Maria Nascente of the Don C. Gnocchi Foundation.Background: The prognostic value of evoked potentials (EPs) in multiple sclerosis (MS) has not been fully established. The correlations between the Expanded Disability Status Scale (EDSS) at First Neurological Evaluation (FNE) and the duration of the disease, as well as between EDSS and EPs, have influenced the outcome of most previous studies. To overcome this confounding relations, we propose to test the prognostic value of EPs within an appropriate patient population which should be based on patients with low EDSS at FNE and short disease duration. Methods: We retrospectively selected a sample of 143 early relapsing remitting MS (RRMS) patients with an EDSS < 3.5 from a larger database spanning 20 years. By means of bivariate logistic regressions, the best predictors of worsening were selected among several demographic and clinical variables. The best multivariate logistic model was statistically validated and prospectively applied to 50 patients examined during 2009-2011. Results: The Evoked Potentials score (EP score) and the Time to EDSS 2.0 (TT2) were the best predictors of worsening in our sample (Odds Ratio 1.10 and 0.82 respectively, p=0.001). Low EP score (below 15-20 points), short TT2 (lower than 3-5 years) and their interaction resulted to be the most useful for the identification of worsening patterns. Moreover, in patients with an EP score at FNE below 6 points and a TT2 greater than 3 years the probability of worsening was 10% after 4-5 years and rapidly decreased thereafter. Conclusions: In an appropriate population of early RRMS patients, the EP score at FNE is a good predictor of disability at low values as well as in combination with a rapid buildup of disability. Interestingly, an EP score at FNE under the median together with a clinical stability lasting more than 3 years turned out to be a protective pattern. This finding may contribute to an early identification of benign patients, well before the term required to diagnose Benign MS (BMS).Publisher PDFPeer reviewe

    APOE ε4 Allele Modifies the Association of Lead Exposure with Age-related Cognitive Decline in Older Individuals

    Get PDF
    BACKGROUND: Continuing chronic and sporadic high-level of lead exposure in some regions in the U.S. has directed public attention to the effects of lead on human health. Long-term lead exposure has been associated with faster cognitive decline in older individuals; however, genetic susceptibility to lead-related cognitive decline during aging has been poorly studied. METHODS: We determined the interaction of APOE-epsilon variants and environmental lead exposure in relation to age-related cognitive decline. We measured tibia bone lead by K-shell-x-ray fluorescence, APOE-epsilon variants by multiplex PCR and global cognitive z-scores in 489 men from the VA-Normative Aging Study. To determine global cognitive z-scores we incorporated multiple cognitive assessments, including word list memory task, digit span backwards, verbal fluency test, sum of drawings, and pattern comparison task, which were assessed at multiple visits. We used linear mixed-effect models with random intercepts for individual and for cognitive test. RESULTS: An interquartile range (IQR:14.23μg/g) increase in tibia lead concentration was associated with a 0.06 (95% confidence interval [95%CI]: -0.11 to -0.01) lower global cognition z-score. In the presence of both ε4 alleles, one IQR increase in tibia lead was associated with 0.57 (95%CI: -0.97 to -0.16; p-value for interaction: 0.03) lower total cognition z-score. A borderline association was observed in presence of one ε4 allele (Estimate-effect per 1-IQR increase: -0.11, 95%CI: -0.22, 0.01) as well as lack of association in individuals without APOE ε4 allele. CONCLUSIONS: Our findings suggest that individuals carrying both ε4 alleles are more susceptible to lead impact on global cognitive decline during aging

    Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk

    Get PDF
    BACKGROUND: Although per- and polyfluoroalkyl substances (PFAS) exposure is a potential contributor to the increasing thyroid cancer trend, limited studies have investigated the association between PFAS exposure and thyroid cancer in human populations. We therefore investigated associations between plasma PFAS levels and thyroid cancer diagnosis using a nested case-control study of patients with thyroid cancer with plasma samples collected at/before cancer diagnosis. METHODS: 88 patients with thyroid cancer using diagnosis codes and 88 healthy (non-cancer) controls pair-matched on sex, age (±5 years), race/ethnicity, body mass index, smoking status, and year of sample collection were identified in the BioMe population (a medical record-linked biobank at the Icahn School of Medicine at Mount Sinai in New York); 74 patients had papillary thyroid cancer. Eight plasma PFAS were measured using untargeted analysis with liquid chromatography-high resolution mass spectrometry and suspect screening. Associations between individual PFAS levels and thyroid cancer were evaluated using unconditional logistic regression models to estimate adjusted odds ratios (OR adj) and 95% confidence intervals (CI). FINDINGS: There was a 56% increased rate of thyroid cancer diagnosis per doubling of linear perfluorooctanesulfonic acid (n-PFOS) intensity (OR adj, 1.56, 95% CI: 1.17-2.15, P = 0.004); results were similar when including patients with papillary thyroid cancer only (OR adj, 1.56, 95% CI: 1.13-2.21, P = 0.009). This positive association remained in subset analysis investigating exposure timing including 31 thyroid cancer cases diagnosed ≥1 year after plasma sample collection (OR adj, 2.67, 95% CI: 1.59-4.88, P < 0.001). INTERPRETATION: This study reports associations between exposure to PFAS and increased rate of (papillary) thyroid cancer. Thyroid cancer risk from PFAS exposure is a global concern given the prevalence of PFAS exposure. Individual PFAS studied here are a small proportion of the total number of PFAS supporting additional large-scale prospective studies investigating thyroid cancer risk associated with exposure to PFAS chemicals. FUNDING: National Institutes of Health grants and The Andrea and Charles Bronfman Philanthropies

    Comparative efficacy of three Bayesian variable selection methods in the context of weight loss in obese women

    Get PDF
    The use of high-dimensional data has expanded in many fields, including in clinical research, thus making variable selection methods increasingly important compared to traditional statistical approaches. The work aims to compare the performance of three supervised Bayesian variable selection methods to detect the most important predictors among a high-dimensional set of variables and to provide useful and practical guidelines of their use. We assessed the variable selection ability of: (1) Bayesian Kernel Machine Regression (BKMR), (2) Bayesian Semiparametric Regression (BSR), and (3) Bayesian Least Absolute Shrinkage and Selection Operator (BLASSO) regression on simulated data of different dimensions and under three scenarios with disparate predictor-response relationships and correlations among predictors. This is the first study describing when one model should be preferred over the others and when methods achieve comparable results. BKMR outperformed all other models with small synthetic datasets. BSR was strongly dependent on the choice of its own intrinsic parameter, but its performance was comparable to BKMR with large datasets. BLASSO should be preferred only when it is reasonable to hypothesise the absence of synergies between predictors and the presence of monotonous predictor-outcome relationships. Finally, we applied the models to a real case study and assessed the relationships among anthropometric, biochemical, metabolic, cardiovascular, and inflammatory variables with weight loss in 755 hospitalised obese women from the Follow Up OBese patients at AUXOlogico institute (FUOBAUXO) cohort

    Genomic targets and selective inhibition of DNA methyltransferase isoforms

    Get PDF
    Background: DNA methylation in the human genome is established and maintained by DNA methyltransferases (DNMTs). DNMT isoforms show differential expression by cell lineage and during development, but much remains to be elucidated about their shared and unique genomic targets. Results: We examined changes in the epigenome following overexpression of 13 DNMT isoforms in HEK293T cells. We observed increased methylation (Δβ > 0.2) at 43,405 CpG sites, with expression of DNMT3A2, DNMTΔ3B4 and DNMTΔ3B2 associated with the greatest impact. De novo methylation occurred primarily within open sea regions and at loci with intermediate methylation levels (β: 0.2-0.6). 53% of differentially methylated loci showed specificity towards a single DNMT subfamily, primarily DNMTΔ3B and DNMT3A and 39% towards a single isoform. These loci were significantly enriched for pathways related to neuronal development (DNMTΔ3B4), calcium homeostasis (DNMTΔ3B3) and ion transport (DNMT3L). Repetitive elements did not display differential sensitivity to overexpressed DNMTs, but hypermethylation of Alu elements was associated with their evolutionary age following overexpression of DNMT3A2, DNMT3B1, DNMT3B2 and DNMT3L. Differential methylation (Δβ > 0.1) was observed at 121 of the 353 loci associated with the Horvath 'epigenetic clock' model of ageing, with 51 showing isoform specificity, and was associated with reduction of epigenetic age by 5-15 years following overexpression of seven isoforms. Finally, we demonstrate the potential for dietary constituents to modify epigenetic marks through isoform-specific inhibition of methylation activity. Conclusions: Our results provide insight into regions of the genome methylated uniquely by specific DNMT isoforms and demonstrate the potential for dietary intervention to modify the epigenome

    Topological network properties of resting-state functional connectivity patterns are associated with metal mixture exposure in adolescents

    Get PDF
    IntroductionAdolescent exposure to neurotoxic metals adversely impacts cognitive, motor, and behavioral development. Few studies have addressed the underlying brain mechanisms of these metal-associated developmental outcomes. Furthermore, metal exposure occurs as a mixture, yet previous studies most often consider impacts of each metal individually. In this cross-sectional study, we investigated the relationship between exposure to neurotoxic metals and topological brain metrics in adolescents. MethodsIn 193 participants (53% females, ages: 15-25 years) enrolled in the Public Health Impact of Metals Exposure (PHIME) study, we measured concentrations of four metals (manganese, lead, copper, and chromium) in multiple biological media (blood, urine, hair, and saliva) and acquired resting-state functional magnetic resonance imaging scans. Using graph theory metrics, we computed global and local efficiency (global:GE; local:LE) in 111 brain areas (Harvard Oxford Atlas). We used weighted quantile sum (WQS) regression models to examine association between metal mixtures and each graph metric (GE or LE), adjusted for sex and age. ResultsWe observed significant negative associations between the metal mixture and GE and LE [beta GE = -0.076, 95% CI (-0.122, -0.031); beta LE= -0.051, 95% CI (-0.095, -0.006)]. Lead and chromium measured in blood contributed most to this association for GE, while chromium measured in hair contributed the most for LE. DiscussionOur results suggest that exposure to this metal mixture during adolescence reduces the efficiency of integrating information in brain networks at both local and global levels, informing potential neural mechanisms underlying the developmental toxicity of metals. Results further suggest these associations are due to combined joint effects to different metals, rather than to a single metal
    • …
    corecore