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Abstract

The difference-in-differences (DID) approach is a well known strategy for estimating the effect of 

an exposure in the presence of unobserved confounding. The approach is most commonly used 

when pre-and post-exposure outcome measurements are available, and one can assume that the 

association of the unobserved confounder with the outcome is equal in the two exposure groups, 

and constant over time. Then, one recovers the treatment effect by regressing the change in 

outcome over time on the exposure. In this paper, we interpret the difference-in-differences as a 

negative outcome control (NOC) approach. We show that the pre-exposure outcome is a negative 

control outcome, as it cannot be influenced by the subsequent exposure, and it is affected by both 

observed and unobserved confounders of the exposure-outcome association of interest. The 

relation between DID and NOC provides simple conditions under which negative control 

outcomes can be used to detect and correct for confounding bias. However, for general negative 

control outcomes, the DID-like assumption may be overly restrictive and rarely credible, because 

it requires that both the outcome of interest and the control outcome are measured on the same 

scale. Thus, we present a scale-invariant generalization of the DID that may be used in broader 

NOC contexts. The proposed approach is demonstrated in simulations and on a Normative Aging 

Study data set, in which Body Mass Index is used for NOC of the relationship between air 

pollution and inflammatory outcomes.

1. INTRODUCTION

Unmeasured confounding can seldom be ruled out in nonexperimental studies. Over the 

years, a number of analytic techniques were developed in epidemiology and the social 

sciences to detect and ideally, adjust for, bias due to unobserved confounding. One common 

approach is so-called “difference-in-differences” (DID) estimation (Meyer, 1995 ; Angrist 

and Krueger, 1999 ; Blundell and MaCurdy, 2000 ), which is typically used when
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i. One has observed the outcome pre- and post-exposure for each person, and

ii. the association of the unobserved confounder with the outcome is assumed equal 

across exposure groups and constant over time.

Then, the approach entails estimating the effect of exposure by taking a difference between 

exposure groups of the average change in outcome over time.

Another approach for evaluating the presence of confounding bias, sometimes used in 

epidemiologic practice, consists of estimating an association between the exposure and a so-

called negative control outcome. That is, an observed outcome not causally related to the 

treatment, and influenced by unmeasured confounders of the exposure-outcome relationship 

of primary interest. Lipsitch et al. (2010) and Flanders et al. (2011) discussed using negative 

control outcomes to detect confounding by unmeasured factors, as indicated by evidence of 

an association between the exposure and the negative control outcome conditional on 

observed confounders. Tchetgen Tchetgen (2014) proposed a calibration approach to correct 

causal effect estimates for bias due to unobserved confounding. However, the identification 

conditions of Tchetgen Tchetgen (2014) require that the ranks of the outcome of interest be 

preserved under exposure and no exposure conditions (also known as rank preservation). It 

is of interest to identify more general conditions under which the exposure-negative control 

outcome association gives a valid estimate of unmeasured confounding bias that can simply 

be removed (e.g. subtracted) from the estimated exposure-outcome association to give a 

valid causal effect estimate.

In this paper, we interpret the DID as a negative outcome control (NOC) approach to adjust 

for unobserved confounding. The equivalence follows from noting that the pre-exposure 

outcome in DID is an ideal negative control outcome, since it cannot be influenced by the 

subsequent exposure, and it is likely affected by both measured and unobserved risk factors 

for the post-exposure outcome. We then show that assumption (ii) is equivalent to an 

“additive equi-confounding” assumption that the magnitude of confounding bias for the 

primary outcome is equal on the additive scale to the confounding bias for the negative 

control outcome. Assumptions (i) and (ii) are equivalent to conditions under which one can 

use negative controls to detect – and also sometimes to correct for – confounding bias. 

However, the additive equi-confounding assumption may be overly restrictive outside of the 

context of pre- and post-outcome measurements, because it requires that both the primary 

and negative control outcomes are measured on the same scale. As a remedy, we consider a 

generalization of DID via a scale-invariant approach largely motivated by the change-in-

changes approach of Athey and Imbens (2006), that may be more broadly applicable. Our 

approach however goes beyond Athey and Imbens (2006) in that we give weaker 

identification conditions and develop a flexible framework for estimation and inference 

using a familiar location-scale model specification that allows one to easily incorporate a 

possibly large number of observed confounders. Both the scale-invariance property of the 

more general approach and its ability to incorporate covariates make our methods 

particularly well suited for NOC. Importantly, while Athey and Imbens (2006) briefly 

consider covariate adjustment, they rely on an assumption that the unobserved confounder is 

independent of observed covariates conditional on the exposure. However, due to collider 

bias stratification (Pearl, 2009; Hernán et al., 2004), this latter assumption cannot hold if 
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both observed and unobserved covariates either cause or share a common cause with the 

exposure, thus invalidating their proposed covariate adjustment approach when the observed 

covariates are confounders. Our proposed approach also offers an alternative to the control 

outcome calibration approach (COCA) of Tchetgen Tchetgen (2014) by avoiding the rank-

preservation assumption it relies on, and replacing it with milder assumptions regarding a 

negative control outcome.

The paper is organized as follows. In Section 2 we present the NOC framework and relate it 

to the DID. In Section 3 we show how negative outcomes potentially can be used in broader 

settings than the classical DID, and develop a general NOC approach to indirectly account 

for unobserved confounding, together with a framework for inference under a location-scale 

model. In Section 4 we provide a simulation study of the proposed methods, and in Section 

5 we illustrate the method by estimating the short term effect of air pollution on blood 

inflammation markers, with Body Mass Index (BMI) used as a negative outcome.

2. NOTATION, DEFINITIONS AND ADDITIVE EQUI-CONFOUNDING

Let A denote the exposure received by an individual, let Y denote a post-exposure outcome, 

and let C denote a set of observed confounding variables of the effect of A on Y. Let U 
denote unmeasured confounders of the effect of A on Y. Let Ya denote an individual’s 

outcome if exposure A were set, possibly contrary to fact, to a. In this work, we are 

interested in estimating the so-called marginal average effect of treatment on the treated 

(ETT), defined as

Let N denote a negative control outcome variable. The relationships between these variables 

may be depicted by the causal diagram in Figure 1. As shown in the figure, N is a negative 

control outcome because it is not directly influenced by exposure, but it is influenced by the 

unobserved confounders of the exposure-outcome association (Lipsitch et al., 2010). Note 

that N and Y can be (but do not have to be) associated independently of their common 

causes U and C, as in the simple DID scenario in which the negative control outcome is the 

pre-exposure value of the outcome of interest.

To provide identifiability conditions for the causal effect of A on Y, let Na denote an 

individual’s counterfactual value for N if A were set to a. The following assumptions state 

that the negative outcome is not affected by the exposure, and that the observed outcome 

corresponds to the counterfactual outcome for the observed exposure value (i.e. the so-called 

consistency assumption).

Assumption 1—Na = N, a = 0, 1, and Ya = Y if A = a.

The assumption that (C, U) suffice to adjust for confounding for the effect of A on Y implies 

that:
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(1)

for all (c, u), however C alone may not completely account for exposure-outcome 

confounding, that is

(2)

for some c, and likewise for N0 replacing Y0.

2.1 Difference-in-differences as an additive negative outcome control approach

Next, consider the longitudinal study represented in Figure 2 in which the outcome process 

Y (t) is measured at 2 occasions, t = 0, 1, with Y (0) and Y (1) pre- and post-exposure 

variables, respectively. According to this graph, although A is a cause of Y (1), it does not 

cause Y (0) (although the reverse may hold), and the unobserved confounder of the effect of 

A on Y (1), U, is also a cause of Y (0). This causal diagram represents a typical situation 

under which difference-in-differences may potentially be used to account for unobserved 

confounding by U. However an additional assumption about the underlying structure of 

confounding is required to justify the standard DID approach, and is described below. The 

similarity of the causal structure encoded in both Figures 1 and 2 is quite striking, as Figure 

1 can be obtained from Figure 2 by relabeling Y (0) as N and Y (1) as Y, thus establishing a 

direct correspondence between the NOC causal framework and the DID framework. As 

noted above, identification of the effect of A on Y using DID, relies on further elaboration of 

the data generating mechanism under Figure 1. A simple causal model supposes that Y (t) 
follows the simple linear model (where individual observations are suppressed in the 

notation)

(3)

such that m (t) indexes a time-specific intercept, γ(t) indexes a time-specific association 

between C and Y (t), b(U) indexes the effect of U on Y (t) which is assumed independent of 

t, A and C, and β encodes the causal effect of A on Y (1). Let Ya(t) denote the 

counterfactual outcome at t under exposure a, and note that the key assumption encoded in 

equation (3) is that

(4)

which implies that C suffices to adjust for confounding between A and Y (1)− Y (0), and 

thus
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(5)

Since treatment is assumed to start only after time 0, so that E[Y1(0)|A = 1, C] = E[Y0(0)|A 
= 1, C], and using equation 5, we obtain the following equality:

(6)

(7)

The effect identified in (6) defines the DID estimand under equation (3), and therefore under 

assumption (4) is equal to E {Y1(1) − Y0(1)|A = 1}, the marginal causal effect of treatment 

on the treated. Interestingly, rather than assuming equation (3), one may take equation (5) as 

a primitive condition, which may hold without necessarily assuming the model given by 

equation (3) holds exactly. Only assuming that (5) holds has previously been shown to 

suffice for nonparametric identification of the marginal ETT even when the linear model (3) 

does not necessarily hold (Abadie, 2005). Thus, assuming no heterogeneity in the effect of A 
across strata of C and U as encoded in model (3) is not strictly necessary to estimate the 

causal effect of treatment on the treated.

2.2 Additive equi-confounding bias

Here, we are particularly interested in the following, alternative, formulation of (5):

which, upon substituting Y0 for Y0(1) and N for Y (0), is equivalently expressed:

(8)

where the left hand-side of (8) encodes the degree of confounding bias (2) for the effect of A 
on Y, and the right hand-side of (8) likewise represents confounding bias for the (null) effect 

of A on N. Equation (8) provides the “additive equi-confounding” assumption, which 

connects identification in the DID approach to identification in the NOC framework.

The additive equi-confounding assumption 8 thus states that the magnitude of confounding 

bias for estimating the effect of A on Y and that of A on N are exactly equal. Thus, we may 

conclude that under additive equi-confounding, a DID type approach may be used to 

estimate the marginal ETT α in the presence of unobserved confounding and likewise if one 

has access to a negative outcome control variable N (which may differ from a pre-exposure 

realization of the outcome).
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Therefore, the additive equi-confounding assumption formalizes the relation between DID 

and NOC, making connection to a fairly rich literature on DID for inference under a NOC 

framework. The DID literature includes several variants of the parametric strategy described 

above, as well as more flexible semiparametric methods (see Angrist and Pischke, 2008; 

Abadie, 2005, and references therein). However, the additive equi-confounding assumption 

may only be credible in settings where the primary and the negative control outcomes are 

measured on the same scale, say as distinct realizations of the same underlying process as in 

the difference-in-differences context. This restriction is well illustrated by the linear model 

(3) in which the invariance of b(U) with respect to time encodes the equivalent assumption 

for a negative outcome control, that the association between U and the primary outcome is 

the same as that between U and the negative control outcome. Such an assumption may be 

inappropriate even if one has available a valid negative control outcome which satisfies 

Figure 1. In the next section, we consider a weaker form of equi-confounding which may be 

more useful in practice for NOC.

3. DISTRIBUTIONAL EQUI-CONFOUNDING AND INDIRECT NOC 

CONFOUNDING ADJUSTMENT

In this section, we consider a more general framework for NOC adjustment of unobserved 

confounding under assumptions considerably less restrictive than additive equi-confounding.

3.1 General NOC identification conditions

We relax the previous structure of unobserved confounding for Y and N, by allowing the 

unobserved confounder for the effect of A on Y denoted by U, to be distinct from the 

unobserved confounder of the effect of A on N, denoted W.

Assumption 2—A⫫Y0|C, U, however A⫫̸ Y0|C, and A⫫N|C, W, however A⫫̸ N|C.

This more general framework is depicted in Figure 3. In addition to this causal diagram, in 

order to appropriately account for possible non-linearity and scale differences between the 

outcome and the negative control outcome, we introduce a more general nonparametric 

structural equations model:

Assumption 3—Y0 and N are related to U, W and C according to

(9a)

(9b)

where
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(10a)

and

(10b)

This set of equations encodes the fact that consistent with Figure 3, U and C are parents of 

Y0, and therefore are parents of Y, and likewise that W and C are parents of N. The direction 

of monotonicity in equations (10a,10b) can be changed without any real consequence. This 

assumption might be most compelling if one has available specific knowledge about what 

common cause of the treatment and the outcome, although unobserved, might satisfy the 

monotonicity assumption, even if just approximately. Such knowledge would strengthen 

credibility in the monotonicity assumption, violation of which is likely to invalidate the 

proposed approach without an alternative assumption.

We now consider quantile-quantile and distributional equi-confounding as less restrictive 

identifying assumptions for NOC than additive equi-confounding. To proceed, we introduce 

the quantile-quantile transformation, as a measure of association between two variables, 

which we will use to encode confounding bias. Let FX|Z(·) denote the cumulative distribution 

function of a X given Z, let fX|Z be the corresponding density function,  its inverse 

map, and let f ∘ g (x) = f(g(x)) denotes composition of functions f and g. Define the quantile-

quantile (qq) association between U and A conditional on C:

Under independence of U and A given C (i.e. no confounding bias), we have that q0(v|c) = v, 

while any departure from the identity function encodes unobserved confounding, i.e. q0(v|c) 

− v ≠ 0 for some value c. Likewise let

Figure 5 provides an example of an estimated qq-transformation function between two 

distributions estimated from the data set discussed in Section 5. The function maps the 

probability distribution of the scaled residuals of log-BMI to a probability distribution of the 

scaled residuals of log-fibrinogen. The diagonal curve corresponds to the hypothesis that 

both sets of residuals follow a common distribution such that the 20th percentile under one 

matches that under the other. However, in Figure 5 the value of the 20th percentile of F̂δ 
corresponds to the 38th percentile under F̂ε. The quantile-quantile equi-confounding 

assumption is given below.
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Assumption 4—Quantile-quantile equi-confounding.

(11)

This assumption implies that the association (on the quantile-quantile scale) between U and 

A is the same as between W and A conditional on C. Note that that both q0 and q1 while 

being equal under the assumption, will generally not be equal to the identity map in the 

presence of unobserved confounding. Quantile-quantile equi-confounding is implied by the 

following somewhat stronger distributional equi-confounding bias assumption, although the 

latter is still considerably weaker than additive equi-confounding. Let X ~ Z denote that X 
and Z follow a common distribution.

Assumption 5—Distributional equi-confounding.

(12)

The assumption states that the conditional distribution of the unobserved confounder for Y is 

the same as that for N given A and C. Note that both assumptions 4 and 5 are trivially 

satisfied, if as previously assumed, the unobserved confounder of Y and N is the same, i.e. U 
= W. Note also that both assumptions are considerably weaker than the previous additive 

equi-confounding assumption (8) because they place no restriction beyond monotonicity on 

the relationship between U and Y0, and likewise for the relationship between W and N. 
Crucially, they are both invariant in a monotone transformation of the outcome, and 

therefore, do not suffer from the scale restriction of additive equi-confounding.

The following Theorem 1 establishes nonparametric identification of the marginal effect of 

treatment on the treated α under quantile-quantile equi-confounding, and therefore also 

under distributional equi-confounding. Define N* ~ N|A = 1, C to be a random variable 

distributed as the negative outcome in the exposed group. The main identification result 

requires the additional regularity condition:

Assumption 6—Positivity.

(13)

This condition ensures that values of the negative outcome in the exposed are in the support 

of the distribution of the negative outcome in the unexposed, and the probability 

FN|A=0,C(N*) will not be identically 1 or 0 for some set of plausible values of N*.

Theorem 1: Under assumptions 1–4 and 6, we have that
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where

All proofs can be found in Appendix A. It is helpful to contrast the estimand obtained in 

Theorem 1 under qq equi-confounding, to that obtained under additive equi-confounding. 

Recall that under the latter condition equation 6 states that the ETT is given by

Under qq equi-confounding bias  is is substituted for E{Y |A = 

0, C} + E{N|A = 0, C} − E{N|A = 1, C} as the negative control-adjusted identifying 

expression for the conditional counterfactual mean E(Y0|A = 1).

Theorem 1 is a negative control analog of a similar identification result in the change-in-

changes approach of Athey and Imbens (2006), which they obtain under a more stringent 

assumption analogous to distributional equi-confounding. Whereas Athey and Imbens 

(2006)’s primary goal was to account for possible non-linearity in a DID context, our 

primary concern has been to account for possible differential scaling in a NOC context, and 

to demonstrate the close relationship between these contexts as established by the above 

result. The isomorphism between the two frameworks further provides a principled 

framework for NOC of unobserved confounding, possibly using a post-exposure outcome to 

achieve such control.

3.2 Indirect NOC adjustment in the location-scale model

For inference, we discuss indirect adjustment under a location-scale semiparametric model. 

Specifically, suppose that both Y and N follow a location-scale model conditional on C in 

the unexposed, with A = 0. Let

and likewise, let
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Then the location-scale models for Y and N states that

(14)

where fε(·) and fδ(·) are unrestricted baseline densities with cumulative distribution functions 

Fε(·) and Fδ(·).

Corollary 1: Under the assumptions stated in Theorem 1 and the location-scale model (14), 

we have that

(15)

and in the special case where Fε(·) = Fδ(·), then

(16)

Note also that if Fδ(·) = Fε(·), i.e. if the distribution of scaled-residuals ε and δ coincide then 

the regularity condition 6 is not strictly required. Next, we describe a simple practical 

implementation of the NOC adjustment given in Corollary 1, first assuming a location-scale 

family allowing Fδ(·) and Fε(·) to be different, and then further assuming Fδ(·) = Fε(·).

Let μ̂n(·), μ̂y(·) be estimators of the mean functions for the negative and primary outcomes 

under no exposure, and let ŝn(·), ŝy(·) denote estimators of the standard deviations of N and 

Y. These can be obtained using standard models for mean and variance regression, e.g. one 

may take  the ordinary least squares estimator of E(N |A = 0, C) using the 

subsample with A = 0, and likewise one may take  a standard log-

linear regression of the squared N − μn(C) in the unexposed subsample, and similarly for μ̂y 

(·) and ŝy (·). Further, let F̂δ(·) and F̂ε(·) denote the empirical cumulative distribution 

functions of ε̂ and δ̂ where ε̂ = {Y − μ̂y(Ci)}/ŝy(Ci) and δ = {N − μ̂n(C)}/ŝn(C) among the 

unexposed, i.e. when A = 0. Specifically,
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where (·) is the indicator of an event.

Let n1 denote the number of exposed persons.

1. Following Theorem 1 and Corollary 1, an estimator of α is obtained by 

substitution, i.e.

(17)

2. Under homoscedasticity, i.e. ŝy(Ci) = ŝy obtained in a intercept-only regression, 

and similarly for ŝn, we get

(18)

3. Assuming Fδ(·) = Fε(·), (17) simplifies to:

(19)

4. And finally, under both homoscedasticity and Fδ(·) = Fε(·), we get:

(20)

where η̂
y and η̂n are regression-based estimators of the effect of treatment on the 

treated for Y and N respectively. This formulation provides some intuition for the 

proposed indirect adjustment, whereby the standard estimator of the A – Y 
association, obtained from a linear regression of Y on A and C, is adjusted by 

subtracting an estimator of the magnitude of confounding bias given by the 

scaled association between N and A, with scaling factor ŝy/ŝn. The scaling factor 

is necessary here, to account for possible scale differences between N and Y, or 

between the magnitude of the effect of the unmeasured confounder on N and Y. 

The more complicated estimator α̂
1 further accounts for distributional 

differences and possible heteroscedasticity.

These four estimators are all regular and asymptotically linear under standard regularity 

conditions. In the appendix, we provide a simple expression for the large sample variances 

of α̂
3 and α̂

4 which may be used to construct confidence intervals; alternatively, we 

recommend using the nonparametric bootstrap for inference.
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4. SIMULATION STUDY

We conducted a simulation study to demonstrate the applicability of our proposed indirect 

NOC adjustment under a location-scale model. We generated data from the model defined 

by

with U and W from the same location-scale family. We set σy = 3, σn = 1.5, (η0, ηc)T = (1, 

2)T, (β0, βc)T = (2, 3)T, and α̃ = 1, so the exposure effect on the unexposed amounted to α = 

α̃ ×σy = 3. To simulate confounding bias between exposure groups, we determined the 

distribution of C, U and W by exposure status. U and W came from either a normal or a 

uniform distribution, with U, W|A = 0 ~ (0, 1.5), and U, W|A = 1 ~ (2, 1.5), or U, W|A 
= 0 ~ uniform(1, 9) and U, W|A = 1 ~ uniform(3, 13). The observed confounder was 

generated under C|A = 0 ~ (0, 1), C|A = 1 ~ (0.5, 1).

Note that a naïve analysis ignoring the possibility of unmeasured confounding between 

exposure groups would attribute the difference in means

solely to the effect of treatment, when the term (E[U|A = 1] − E[U|A = 0]) × σy is in fact the 

bias, and is equal to 6 when U and W are normally distributed, and 9 when they are 

uniformly distributed.

Briefly consider the assumptions that our estimators are based on in light of the generating 

models for the simulations. First, it is clear that U and C (W and C) are associated with both 

Y (N) and A, so that C and U, and C and W comprise of all the confounders of the A – Y 
and A – N associations respectively, satisfying assumption 2. Further, because U and W have 

the same distributions, the distributional equi-confounding bias assumption 5 (and therefore, 

the weaker assumption 4) is satisfied. Assumption 3 is clearly satisfied. Finally, note that 

under the uniform distribution scenario, the positivity assumption 6 does not hold, and 

therefore the estimators α̂
1 and α̂

2 from Section 3.2 may be biased. However the estimators 

α̂
3 and α̂

4 that assume FN (·) = FY (·) should not be biased, since in this case the positivity 

assumption is not required.

We generated data with n = 100, 500 observations, and n/2 observations in each exposure 

group. We compared the accuracy of the estimators proposed in Section 3.2 over 1000 

simulations. Note that although both outcomes are generated under homoscedastic errors, 

with U and W following a common distribution given A and C, nonetheless, we consider 

inferences about the marginal ETT α using the NOC methods developed in previous 

sections both with and without imposing these assumptions. In addition, we compare the 
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estimator of α using NOC to the naïve regression-based estimator that simply regresses Y on 

A and C.

Table 1 provides the absolute bias and MSE of the estimator of treatment effect on the 

treated for each of the various scenarios and assumptions described above. Using N for 

negative outcome control assuming a location-scale model yields very good results. The data 

were simulated with homoscedastic errors and a common location-scale family for Y and N, 

so that the qq-transformation between the standardized Y and N in the unexposed group is 

the identity. Accordingly, when homoscedasticity and identity qq-transformations were 

assumed (estimator α̂
4), the estimated effects are unbiased and the MSE is smallest 

compared to other scenarios. Relaxing the homoscedasticity assumption and modeling the 

variance via a log-linear model (estimator α̂
1) resulted in only slightly larger MSEs. 

However, nonparametric estimation of the qq-transformation had mixed effects. Under 

normal distribution of the unobserved confounders, estimating the qq-transformation 

(estimators α̂
1 and α̂

2) had little effect on the bias and efficiency of the estimators. However, 

under uniform distribution of the unmeasured confounders, estimating this transformation 

resulted in substantially larger MSEs and biased estimators. This may be because the 

positivity condition did not hold in this setting. The naïve estimator that regresses Y against 

A and C had the expected bias.

5. DATA ANALYSIS

We implemented the proposed NOC indirect adjustment to account for confounding in 

studying the effect of short term (4 weeks) exposure to black carbon (BC, an air pollution 

component) on fibrinogen, a blood inflammation marker. We selected BMI as the negative 

control outcome, since BMI is likely not affected by short term exposure to air pollution, 

while it likely shares unmeasured confounders with inflammation markers. In prior work by 

Zeka et al. (2006), fibrinogen levels were shown to be associated with 4 weeks of exposure 

to BC in the Normative Aging Study (NAS) cohort. The investigators took 4 weeks moving 

averages of BC, measured at an areal sensor, just prior to a clinic visit as the exposure, and 

adjusted for multiple confounders, including BMI. We now re-analyze this data set.

The NAS is a longitudinal study following a cohort of US veterans. They report to the clinic 

every 3–4 years. We consider a data set of 1,727 complete cases (i.e. with observed 

exposures, measured covariates, and outcome values) from visits between November 14, 

2000 and December 31, 2004, as in Zeka et al. (2006). We use BC values measured either at 

the areal sensor in Boston (as in Zeka et al. (2006)), or geospatial model-predicted values at 

participants’ home addresses (Gryparis et al., 2007). The covariates were age and weather-

related variables: season, mean barometric pressure, relative humidity, and temperature in 

the 24 hours preceding the clinic visit. Table 2 provides the cohort characteristics. BC is 

dichotomized and set to 0 if BC is less than the median observed in the data (“low 

exposure”), and 1 otherwise (“high exposure”). We implemented the four estimators 

compared in the simulations, i.e. the more robust models allowing for heteroscedasticity, 

and/or different location-scale family, and the model that assumes homoscedasticity and a 

common location-scale family. In addition to these estimators, we also compared the 

analysis to the naïve analysis that regresses log-fibrinogen on the BC measure of interest, 
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covariates, and BMI, as well as to an NOC approach under additive equi-confounding, 

which amounts to a standard DID-type analysis that assumes that the negative control 

outcome log-BMI is measured on the same scale as the primary outcome log-fibrinogen.

In order to evaluate the assumption of a common location-scale family, we considered the 

histograms of scaled residuals of BMI, fibrinogens, and their log-transformation in the low-

exposure group, after regressing on covariates. These histograms are provided in Figure 5. 

One can see that after log-transformation both the primary and control outcomes have 

symmetric distributions, and it may be reasonable to assume that they are from a common 

location-scale family. We also observed that log-fibrinogen and log-BMI are measured on 

different scales. We also considered the empirical qq-transformation  in Figure 

5. Upon inspection of the figure, this empirical curve clearly departs from the identity 

function, although such informal inspection does not appropriately account for uncertainty. 

This suggests that assuming a common location-scale family for the primary and negative 

control outcomes may not be appropriate.

Next, we assessed the homoscedasticity assumption. We used a 5-fold cross-validation of the 

restricted data set, where in each “fold” we took four-fifth of the participants to form a 

training set in which we estimated mean and variance models used to predict the outcomes 

(log-fibrinogen) of the held-out validation data set. We calculated the mean squared errors 

for these predictions as , where nk is the number of 

observation in the k = 1, …, 5 set of observations, βŷ is the vector of regression coefficients 

of the outcome y, and ω is the vector of regression coefficients in the log-linear models of 

the residuals. The cross-validated prediction score is the mean of these 5 scores. Table 3 

provides cross validation results, suggesting that modeling the variances of both Y and N 
conditional on covariates is beneficial.

Figure 6 provides effect estimates using the various models described above, and their 95% 

bootstrap confidence intervals from 1000 bootstrap samples. One can see that when using 

more robust models (that make fewer assumptions, α̂
1 and α̂

2), the confidence intervals are 

wider, in agreement with the simulations studies. Next consider our second set of analyses in 

which the dichotomized (high vs low) BC exposure was measured at an areal sensor. For this 

model, based on the histograms in Figure 4 and the results from assessing heteroscedasticity 

in Table 3, the most appropriate estimators assumes that Y and N come from the same 

location-scale family (α̂
3 and α̂4) and with heteroscedastic error (α̂

1 and α̂
3). Interestingly, 

in this case the effect estimates of BC are larger than the standard regression estimate.

The “DID” analysis had hardly any impact on the results compared to the ordinary 

regression analysis, since log-BMI is measured on a different scale than log-fibrinogen, and 

more accurately - in values much closer to zero. This demonstrates the importance of 

accounting for the outcome’s scale in DID-type analysis and the restrictive nature of the 

additive equi-confounding assumption in this application. More generally, even if the 

negative outcome is the pre-exposure value of the primary outcome, there may be important 

differences in variances across groups.
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Interestingly, when using the predicted BC measures at the participants’ home addresses, BC 

effect estimates are closer to null. This may be due to measurement error from the geospatial 

model used to predict the BC measurements. Such models were shown to often lead to 

biases towards the null in estimating air pollution effects (Zeger et al., 2000).

In contrast with standard regression, estimates based on NOC approaches allowing for 

different location-scale families found no significant exposure effect; however, confidence 

intervals from all models contained the point estimate obtained using standard regression, 

suggesting that BMI does not provide any significant evidence of unobserved confounding 

bias.

6. DISCUSSION

In this paper we propose identification conditions paired with a principled approach for 

negative outcome control of unmeasured confounding to make inferences about ETT. Our 

approach draws on simple relations between DID and NOC to obtain simple identifying 

conditions for NOC. Our work also further generalizes such identifying assumptions by 

leveraging previous work by Athey and Imbens (2006). Another important contribution of 

this paper has been in addition to drawing parallels between seemingly unrelated literature, 

to propose a fairly flexible mode of inference for practical NOC application under a general 

location-scale formulation. Our simulation studies demonstrate that our proposed estimators 

perform well when the assumptions we posit are met, however, the approach appears to be 

particularly sensitive to violation of the positivity assumption, which is violated when the 

support of the scaled residuals of N in the exposed is not entirely contained in the support of 

the scaled residuals of N in the unexposed.

The location-scale model we use for estimation is an example of a so-called “transformation 

model”. The main assumption of the location-model is that the association between the 

covariates and the outcome is only on the mean and variance scale, so that once centered and 

standardized, the outcome (i.e. scaled residual) is independent of covariates. A more familiar 

formulation of the model is Y = μ(X) + σ(X)ε where ε is an independent mean zero error 

with unit variance, and σ2(X) is the variance of Y |X. This formulation highlights the 

connection to standard regression analysis with heteroscedastic error. It is customary to 

assumed that both μ(X) and σ(X) follow simple parametric models as posited in the paper. 

The semiparametric efficiency bound of this model is given in Bickel et al. (1993) where 

they show that the efficient score of regression and variance parameters depend on the 

density of ε. Another known example of a transformation model is the accelerated failure 

time model (Robins and Tsiatis, 1992 ; Cox and Oakes, 1984).

An outstanding question not directly addressed in this paper is how to select a good negative 

control variable in a given application. In general, a useful negative control outcome is easy 

to come about if the exposure has a specific target, e.g. a vaccination for a specific disease. 

Then the selection of an outcome known to have no causal relation to the exposure in view 

can be better informed. Prior information on the possible source of unmeasured confounding 

might also help identify a compelling control outcome. For instance, in a recent paper, 

Richardson et al. (2014) were interested in assessing possible confounding by (unmeasured) 
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smoking behavior in evaluating the causal link between radon exposure and lung cancer. 

Both specificity of the exposure-outcome relation and the hypothesized confounder led the 

authors to selecting COPD as a credible negative control outcome. In our application, it is 

less clear. Many variables that likely share the same confounders as fibrinogen, share its 

biological pathways, and that a causal link between BC exposures and such potential 

variables cannot a priory be ruled out with certainty. Therefore our criterion for selecting an 

negative control outcome was sharpened by incorporating a restriction on the hypothesized 

time frame required to affect the negative control outcome to rule out the possibility of such 

a causal link. While many inflammation-related markers can be modified in short time 

frames such as 4 weeks, BMI will typically remain unchanged in this short time frame.

The instrumental variable approach is a well known common approach to address 

unmeasured confounding in the social sciences and epidemiology. Although both IV and 

NOC address the challenging issue of unmeasured confounding, their assumptions have 

important differences. A valid IV must be directly related to the exposure, only affect the 

outcome through the exposure, and must be independent of unmeasured confounders. 

Therefore while a good negative control outcome is in essence as closely related to the 

unmeasured confounder as possible, the opposite is desirable of a valid IV. Despite this 

important distinction, both approaches can be viewed as a way to estimate the degree of 

selection bias due to unobserved confounding (Tchetgen Tchetgen and Vansteelandt, 2013).
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APPENDIX A: MATHEMATICAL DERIVATIONS

Define the inverse probability function as

Proof of Theorem 1

Let SN|A,C (n) = P {N ≥ n|A, C} and FN|A,C (n) = P {N < n|A, C}. First we establish that 

assumption 4 is equivalent to:

since

and also

where the third equality holds due to the monotonicity assumption 3, taking the inverse and 

using assumption 3 we get
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(A.1)

and therefore by plugging-in (A.1) into the expression for , we may 

conclude that

where we used assumption 3 in the third identity and the definition of the cumulative 

distribution function in the last. Likewise,

Therefore, by the quantile-quantile equi-confounding assumption 4,

(A.2)

Finally, if one takes the probability of the random variables in the second row according to 

the cumulative density function FY0>|A=0,C (·), we get:

since N* ~ N|A = 1, C, or equivalently, , where V is a uniformly distributed 

random variable, and using the positivity assumption 6, and the consistency assumption 1, 

we get that

proving the result. In the last equation, note that if , the positivity 

assumption is not required, since the FN|A=0,C is not applied to N*.
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Proof of Corollary 1

From Theorem 1

First, note that

Second, let , for 0 < u < 1. Then:

Thus,

Combining the two results, we get:

Now, if FY (·) = FN (·), trivially

APPENDIX B: ASYMPTOTIC VARIANCE OF THE LOCATION-SCALE NOC 

ESTIMATE

Assume that sy(Ci) = sy, sn(Ci) = sn. Let βy, βn be the covariates effects on the outcomes Y 
and N respectively in a model where μy(C) = CT βy, μn(C) = CT βn. An estimating equation 

U(θ) for θ = (βy, βn, sy, sn, α) is given by
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with influence function

with:

The matrix  is given by:

with:
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Finally, the covariance matrix of the estimators is given by

where Ui is an individual equation for subject i, and .
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Fig 1. 
Directed acyclic graph depicting the causal association between the treatment A, primary 

outcome Y, negative control outcome N, measured pre-exposure confounders C, and 

unmeasured confounders U.
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Fig 2. 
Directed acyclic graph depicting the causal association between the treatment A, pre-

exposure outcome Y (0), post-exposure outcome Y (1), measured pre-exposure confounders 

C, and unmeasured confounders U.
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Fig 3. 
Directed acyclic graph depicting the causal association between the treatment A, primary 

outcome Y, negative control outcome N, measured pre-exposure confounders C, and 

unmeasured confounders U and W of the primary and secondary outcomes, respectively.
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Fig 4. 
Histograms of the residuals of the primary outcome (fibrinogen) and negative control 

outcome (BMI), and their log transformations, after regressing on the covariates in the low-

exposure group.
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Fig 5. 

The qq-trasformation between F̂δ to F̂ε, defined as  for u ∈ [0, 1]. This qq-

transformation was estimated from the NAS data set, where u is the empirical cumulative 

probability of the scaled residuals of log-BMI and the qq-transformation maps each such 

value to the empirical cumulative probability of the scaled residuals of log-fibrinogen.

Sofer et al. Page 26

Stat Sci. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 6. 
Estimates of the effect of exposures to BC on log-fibrinogen as a binary variable, with 

values either predicted at participants’ home addresses (left), or measured at an areal sensor 

at Boston (right), and 95% bootstrap confidence intervals. Effects were estimated using the 

indirect adjustment method, with the four estimators α1, …, α4, with log-BMI as the 

negative control outcome, and compared to standard regression adjusted to BMI, and to the 

naïve DID method that assumes that the negative control outcome log-BMI is measured at 

the same scale as the primary outcome.
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Table 2

NAS cohort characteristics, for participants observed between November 2000 and December 2004. Measures 

are given in medians and ranges are in parentheses.

Characteristic value

Number of participants 616

Number of visits 703

Age 74 (58, 92)

BMI 27.6 (17.9, 46)

Fibrinogen 328 (109, 741)

Black carbon concentration (Areal) 1.18 (0.32, 2.02)

Black carbon concentration (Address) 0.75 (0.42, 1.17)
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Table 3

5-fold cross-validated prediction scores comparing two models for the variances. The ‘homoscedasticity’ 

option assumes homoscedasticity across all levels of the confounding variables, and ‘model variance’ assumes 

that the covariates affect the error variance via a log-linear model.

Outcome homoscedasticity model variance

log-fibrinogen 0.032 0.007

log-BMI 0.032 0.001
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(·) is the indicator of an event.Let n1 denote the number of exposed persons.1.Following Theorem 1 and Corollary 1, an estimator of α is obtained by substitution, i.e.(17)2.Under homoscedasticity, i.e. ŝy(Ci) = ŝy obtained in a intercept-only regression, and similarly for ŝn, we get(18)3.Assuming Fδ(·) = Fε(·), (17) simplifies to:(19)4.And finally, under both homoscedasticity and Fδ(·) = Fε(·), we get:(20)where η̂y and η̂n are regression-based estimators of the effect of treatment on the treated for Y and N respectively. This formulation provides some intuition for the proposed indirect adjustment, whereby the standard estimator of the A – Y association, obtained from a linear regression of Y on A and C, is adjusted by subtracting an estimator of the magnitude of confounding bias given by the scaled association between N and A, with scaling factor ŝy/ŝn. The scaling factor is necessary here, to account for possible scale differences between N and Y, or between the magnitude of the effect of the unmeasured confounder on N and Y. The more complicated estimator α̂1 further accounts for distributional differences and possible heteroscedasticity.These four estimators are all regular and asymptotically linear under standard regularity conditions. In the appendix, we provide a simple expression for the large sample variances of α̂3 and α̂4 which may be used to construct confidence intervals; alternatively, we recommend using the nonparametric bootstrap for inference.
	Corollary 1



	4. SIMULATION STUDY
	5. DATA ANALYSIS
	6. DISCUSSION
	References
	APPENDIX A: MATHEMATICAL DERIVATIONS
	APPENDIX B: ASYMPTOTIC VARIANCE OF THE LOCATION-SCALE NOC ESTIMATE
	Fig 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Table 1
	Table 2
	Table 3

