3,420 research outputs found

    Understanding the dispersion and assembly of bacterial cellulose in organic solvents

    No full text
    The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils

    Radiative Electroweak Symmetry Breaking in a Little Higgs Model

    Full text link
    We present a new Little Higgs model, motivated by the deconstruction of a five-dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0×SO(5)1SO(5)_0\times SO(5)_1, breaking to SO(5)SO(5), with a gauged subgroup of [SU(2)0L×U(1)0R]×O(4)1[SU(2)_{0L}\times U(1)_{0R}]\times O(4)_1, breaking to SU(2)L×U(1)YSU(2)_L \times U(1)_Y. Radiative corrections produce an additional small vacuum misalignment, breaking the electroweak symmetry down to U(1)EMU(1)_{EM}. Novel features of this model are: the only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model contains a custodial symmetry, which ensures that T^=0\hat{T}=0 at tree-level; and the potential for the Higgs boson is generated entirely through one-loop radiative corrections. A small negative mass-squared in the Higgs potential is obtained by a cancellation between the contribution of two heavy partners of the top quark, which is readily achieved over much of the parameter space. We can then obtain both a vacuum expectation value of v=246v=246 GeV and a light Higgs boson mass, which is strongly correlated with the masses of the two heavy top quark partners. For a scale of the global symmetry breaking of f=1f=1 TeV and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV MH150\lesssim M_H\lesssim150 GeV over much of the range of parameter space. For ff raised to 10 TeV, these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the predicted values of the Higgs boson mass, but the model still favors MH200M_H\lesssim 200 GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in JHEP. Includes additional discussion of sensitivity to UV effects and fine-tuning, revised Fig. 9, added appendix and additional references

    On the effect of resonances in composite Higgs phenomenology

    Full text link
    We consider a generic composite Higgs model based on the coset SO(5)/SO(4) and study its phenomenology beyond the leading low-energy effective lagrangian approximation. Our basic goal is to introduce in a controllable and simple way the lowest-lying, possibly narrow, resonances that may exist is such models. We do so by proposing a criterion that we call partial UV completion. We characterize the simplest cases, corresponding respectively to a scalar in either singlet or tensor representation of SO(4) and to vectors in the adjoint of SO(4). We study the impact of these resonances on the signals associated to high-energy vector boson scattering, pointing out for each resonance the characteristic patterns of depletion and enhancement with respect to the leading-order chiral lagrangian. En route we derive the O(p^4) general chiral lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange

    Formulation and Optimization of Aliskiren Loaded Poly(Lactide-Co-Glycolide) Nanoparticles

    Get PDF
    Aliskiren is a non-peptide, orally active renin inhibitor with poor absorption and low bioavailability (~2.6%). In order to improve the current drug delivery system, a commercially available, biodegradable copolymer, poly(lactide-co-glycolide) (PLGA), was employed for a nanoparticle (NP) reformulation of aliskiren. An emulsion-diffusion-evaporation technique was implemented where aliskiren and PLGA were dissolved in dichloromethane, ethyl acetate, or ethyl acetate/acetone. To an aqueous phase containing 0.25% w/v didodecyldimethylammonium bromide (DMAB) as stabilizer, the previously prepared organic phase was added drop-wise. Following sonication, NP diffusion was expedited with the addition of water, and the organic phase was evaporated to form a suspension. Centrifugation was performed at 10,000 rpm, and the supernatant was analyzed for drug entrapment efficiency via ultraviolet-visible spectroscopy as well as particle morphology with the use of a transmission electron microscope (TEM). Having the highest entrapment efficiency (82.68 ± 1.18 %), ethyl acetate was used as the organic solvent in further testing, such as examining the effects of variation in DMAB stabilizer concentration (0.10, 0.25, 0.50, or 1.00% w/v) and centrifugation speed (10,000 or 12,000 rpm). The optimum formulation was ascertained through observing certain NP characteristics, such as entrapment efficiency particle size, zeta potential, and polydispersity index (PDI). A NICOMP Particle Sizer was used to measure particle size, zeta potential, and PDI. The smallest NP size (67.27 ± 0.87 nm) was accomplished with 0.50% w/v DMAB concentration using a centrifugation speed of 12,000 rpm, while the highest zeta potential (18.73 ± 0.03 mV) was detected with the 1.00% w/v DMAB concentration and a 10,000 rpm centrifugation speed. Further, the best entrapment efficiency and PDI (82.68 ± 1.18 % and 0.15 ± 0.03, respectively) were accomplished with 0.25% w/v DMAB and centrifugation at 10,000 rpm. The most favorable formulation yielding the highest zeta potential (18.73 ± 0.03 mV) was observed when DMAB stabilizer was 1.00% w/v and centrifuged at 10,000 rpm. Particle size and entrapment efficiency for this formulation were 75.67 ± 0.89 nm and 71.62 ± 0.11 %, respectively

    Condensate cosmology in O'Raifeartaigh models

    Full text link
    Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.Comment: 29 pages, 5 figures. Comments and references added, accepted for publication in JHE

    Traumatic thoracic ASIA A examinations and potential for clinical trials

    Get PDF
    Study Design: Retrospective review of prospective database Objectives: To define the variability of neurologic examination and recovery after non-penetrating complete thoracic spinal cord injuries (ASIA A). Background Data: Neurologic examinations after SCI can be difficult and inconsistent. Unlike cervical SCI patients, alterations in thoracic (below T1) complete SCI (ASIA A – based on the ASIA Impairment Scale [AIS]) patients’ exams are based only on sensory testing, thus changes in the neurological level (NL) are determined only by sensory changes. Methods: A retrospective review of the placebo control patients in a multicenter prospective database utilized for the pharmacologic trial of Sygen. Patients were included if they had a complete thoracic SCI on initial evaluation, with completed ASIA examinations at follow-up weeks 4, 8, 16, 26 and 52. Specifically, pin prick (PP) and light touch (LT) were assessed and the absolute change was calculated as the number of spinal levels at a given observation time. Results 3165 patients were initially screened for the Sygen clinical trial, of which 57 were the control placebo patients used in this analysis. Alterations from the baseline exam (PP and LT) were fairly consistent and the median change/recovery in neurologic examination was one spinal level. Across all observations post-baseline, the average change for PP was 1.48 +/- 0.13 (mean +/- SE), and for LT, 1.40 +/-0.13. There were equal proportions of directional changes (none, improved, lost). Conclusions: Changes in a thoracic complete (ASIA A) SCI patient ASIA examination as measured through sensory modalities (PP/LT) are fairly uncommon. The overall examination had only 1-2 level variability across patients, indicating minimal change in the sensory exam over the follow-up period. Stability in the ASIA examination as measured through sensory modalities has thus been demonstrated over time, making it an excellent tool to monitor changes in neurologic function

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    5D UED: Flat and Flavorless

    Full text link
    5D UED is not automatically minimally flavor violating. This is due to flavor asymmetric counter-terms required on the branes. Additionally, there are likely to be higher dimensional operators which directly contribute to flavor observables. We document a mostly unsuccessful attempt at utilizing localization in a flat extra dimension to resolve these flavor constraints while maintaining KK-parity as a good quantum number. It is unsuccessful insofar as we seem to be forced to add brane operators in such a way as to precisely mimic the effects of a double throat warped extra dimension. In the course of our efforts, we encounter and present solutions to a problem common to many extra dimensional models in which fields are "doubly localized:" ultra-light modes. Under scrutiny, this issue seems tied to an intrinsic tension between maintaining Kaluza-Klein parity and resolving mass hierarchies via localization.Comment: 27 pages, 6 figure
    corecore