839 research outputs found
A Fundamental Equivalence between Randomized Experiments and Observational Studies
A fundamental probabilistic equivalence between randomized experiments and observational studies is presented. Given a detailed scenario, the reader is asked to consider which of two possible study designs provides more information regarding the expected difference in an outcome due to a time-fixed treatment. A general solution is described, and a particular worked example is also provided. A mathematical proof is given in the appendix. The demonstrated equivalence helps to clarify common ground between randomized experiments and observational studies, and to provide a foundation for considering both the design and interpretation of studies
A practical example demonstrating the utility of single-world intervention graphs
Causal diagrams have become widespread in epidemiologic research. Recently developed single-world intervention graphs explicitly connect the potential outcomes framework of causal inference with causal diagrams. Here, we provide a practical example demonstrating how single-world intervention graphs can supplement traditional causal diagrams
The Authors Respond
We read with keen interest Cinelli and Pearl’s response to our letter. A key difference in our approaches can be appreciated by examining the first line of each of our derivations
Advances in the proposed electromagnetic zero-point field theory of inertia
A NASA-funded research effort has been underway at the Lockheed Martin
Advanced Technology Center in Palo Alto and at California State University in
Long Beach to develop and test a recently published theory that Newton's
equation of motion can be derived from Maxwell's equations of electrodynamics
as applied to the zero-point field (ZPF) of the quantum vacuum. In this
ZPF-inertia theory, mass is postulated to be not an intrinsic property of
matter but rather a kind of electromagnetic drag force that proves to be
acceleration dependent by virtue of the spectral characteristics of the ZPF.
The theory proposes that interactions between the ZPF and matter take place at
the level of quarks and electrons, hence would account for the mass of a
composite neutral particle such as the neutron. An effort to generalize the
exploratory study of Haisch, Rueda and Puthoff (1994) into a proper
relativistic formulation has been successful. Moreover the principle of
equivalence implies that in this view gravitation would also be electromagnetic
in origin along the lines proposed by Sakharov (1968). With regard to exotic
propulsion we can definitively rule out one speculatively hypothesized
mechanism: matter possessing negative inertial mass, a concept originated by
Bondi (1957) is shown to be logically impossible. On the other hand, the linked
ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of
manipulation of inertia and gravitation, since both are postulated to be
electromagnetic phenomena. It is hoped that this will someday translate into
actual technological potential. A key question is whether the proposed
ZPF-matter interactions generating the phenomenon of mass might involve one or
more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no
figure
Comparing Parametric, Nonparametric, and Semiparametric Estimators: The Weibull Trials
We use simple examples to show how the bias and standard error of an estimator depend in part on the type of estimator chosen from among parametric, nonparametric, and semiparametric candidates. We estimated the cumulative distribution function in the presence of missing data with and without an auxiliary variable. Simulation results mirrored theoretical expectations about the bias and precision of candidate estimators. Specifically, parametric maximum likelihood estimators performed best but must be "omnisciently"correctly specified. An augmented inverse probability-weighted (IPW) semiparametric estimator performed best among candidate estimators that were not omnisciently correct. In one setting, the augmented IPW estimator reduced the standard error by nearly 30%, compared with a standard Horvitz-Thompson IPW estimator; such a standard error reduction is equivalent to doubling the sample size. These results highlight the gains and losses that can be incurred when model assumptions are made in any analysis
Who does what and why? Intra-household roles and explanatory models for sourcing soybean seed from the formal sector in Malawi
Open Access ArticleThis study asks whether there is utility in knowing who sources soybean seed within the household and why when explaining variation in seed obtained from the formal versus informal sector. Survey data collected in Malawi in 2018 were used to explore the question. Results suggest that the identity of the person who sources seed has little to do with whether the seed was obtained from the formal sector. Instead, why the person sources soybean seed is the better predictor. As formal seed system actors mobilize to persuade more smallholder farmers to adopt improved varieties, understanding why people source seed may be key for targeting and when designing agricultural development interventions
The Authors Respond
We welcome the discussion by Huitfeldt and Stensrud on our recent article on generalizing study results. One assumption we listed in the set of sufficient conditions for generalizability was exchangeability between the study sample and the target population, perhaps conditional on a set of covariate
Causal impact: Epidemiological approaches for a public health of consequence
The causal impact framework is a conceptual framework encompassing internal validity, external validity, and population intervention effects, which we argue can help us produce evidence of greater utility to public health decision-making
Generalizing Study Results: A Potential Outcomes Perspective
Great care is taken in epidemiologic studies to ensure the internal validity of causal effect estimates; however, external validity has received considerably less attention. When the study sample is not a random sample of the target population, the sample average treatment effect, even if internally valid, cannot usually be expected to equal the average treatment effect in the target population. The utility of an effect estimate for planning purposes and decision making will depend on the degree of departure from the true causal effect in the target population due to problems with both internal and external validity. Herein, we review concepts from recent literature on generalizability, one facet of external validity, using the potential outcomes framework. Identification conditions sufficient for external validity closely parallel identification conditions for internal validity, namely conditional exchangeability; positivity; the same distributions of the versions of treatment; no interference; and no measurement error. We also require correct model specification. Under these conditions, we discuss how a version of direct standardization (the g-formula, adjustment formula, or transport formula) or inverse probability weighting can be used to generalize a causal effect from a study sample to a well-defined target population, and demonstrate their application in an illustrative example
Near infrared detectors for SNAP
Large format (1k x 1k and 2k x 2k) near infrared detectors manufactured by Rockwell Scientific Center and Raytheon Vision Systems are characterized as part of the near infrared R&D effort for SNAP (the Super-Nova/Acceleration Probe). These are hybridized HgCdTe focal plane arrays with a sharp high wavelength cut-off at 1.7 um. This cut-off provides a sufficiently deep reach in redshift while it allows at the same time low dark current operation of the passively cooled detectors at 140 K. Here the baseline SNAP near infrared system is briefly described and the science driven requirements for the near infrared detectors are summarized. A few results obtained during the testing of engineering grade near infrared devices procured for the SNAP project are highlighted. In particular some recent measurements that target correlated noise between adjacent detector pixels due to capacitive coupling and the response uniformity within individual detector pixels are discussed
- …