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Abstract: Great care is taken in epidemiologic studies to ensure the 
internal validity of causal effect estimates; however, external valid-
ity has received considerably less attention. When the study sample 
is not a random sample of the target population, the sample average 
treatment effect, even if internally valid, cannot usually be expected 
to equal the average treatment effect in the target population. The 
utility of an effect estimate for planning purposes and decision mak-
ing will depend on the degree of departure from the true causal 
effect in the target population due to problems with both internal and 
external validity. Herein, we review concepts from recent literature 
on generalizability, one facet of external validity, using the potential 
outcomes framework. Identification conditions sufficient for external 
validity closely parallel identification conditions for internal validity, 
namely conditional exchangeability; positivity; the same distribu-
tions of the versions of treatment; no interference; and no measure-
ment error. We also require correct model specification. Under these 
conditions, we discuss how a version of direct standardization (the 
g-formula, adjustment formula, or transport formula) or inverse
probability weighting can be used to generalize a causal effect from
a study sample to a well-defined target population, and demonstrate
their application in an illustrative example.

(Epidemiology 2017;28: 553–561)

Epidemiology as a discipline seeks to identify causes of 
disease for the purpose of intervening to improve public 

health. Great care is generally taken in epidemiologic stud-
ies to ensure the internal validity of causal effect estimates.1 
However, the external validity of effect estimates has received 
considerably less attention. Although there have been recent 
advances in methods for drawing externally valid inferences, 
particularly in statistics and computer science,2–6 those con-
cepts have not yet been widely accepted in epidemiology7,8 
as is evidenced by ongoing debates as to the importance of 
representativeness in study samples.9–11 The purpose of this 
article is to review recent developments in generalizability, 
one facet of external validity, using the potential outcomes 
framework.

For the purposes of this article, external validity 
refers to the extent to which an internally valid effect mea-
sured in a study sample is an (asymptotically) unbiased esti-
mator of the treatment effect in the population of interest 
(henceforth, the target population).7 The effect in the study 
sample is sometimes called the sample average treatment 
effect, whereas the effect of interest is sometimes called 
the (target) population average treatment effect. External 
validity can be divided into two problems: generalizabil-
ity and transportability. Generalizability is concerned with 
making inference from a possibly biased sample of the tar-
get population back to the full target population (including 
the study sample), whereas transportability concerns mak-
ing inference for a target population when the study sam-
ple and the target population are partially or completely 
nonoverlapping. Here we will mainly discuss generaliz-
ability, as in references 5, 7, 12. A set of identification 
assumptions sufficient for generalizability are outlined, 
and parallels are noted with identification assumptions 
sufficient for internal validity. We describe two estima-
tors that have been proposed to generalize results from a 
study sample to a target population when the study sample 
was not randomly sampled from the target population: a 
generalization of the g-formula13 (adjustment formula)14,15 
and an inverse probability of sampling weighted estima-
tor. We demonstrate their use with an illustrative example. 
We briefly outline distinctions between generalizability 
and transportability. Finally, we discuss practical consid-
erations for addressing generalizability in epidemiologic 
study design.
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DEFINITIONS AND CAUSAL FRAMEWORK
Specifying a well-defined causal question starts by 

defining: the outcome(s) of interest Y ; the treatments of 
interest A; and the target population.15 The effect of inter-
est (population average treatment effect) is a contrast of the 
average potential outcome in the target population under two 
different interventions, treatments, or policies of interest, for 
example:

E Y a E Y a( )[ ] − ( )[ ]′ (1)

where Y x( ) denotes the outcome that a participant would 
have if he or she received treatment x a a= , ′. Unless other-
wise noted, E  and P  denote expectations and probabilities in 
the target population. Equation (1) can be expanded, by the 
law of total probability, to incorporate pretreatment covari-
ates W :

E E Y a W E Y a W E E Y a Y a W( )[ ] − ( )[ ]}{ = ( ) −[ ]}{| | ( ) |′ ′  (2)

When the effect of interest is heterogeneous over strata 
defined by W , Equation (2) emphasizes that the popula-
tion average treatment effect is a weighted average of the 
stratum-specific effects, with weights defined by the distri-
bution of W  in the target population P W w( )= . (Here, we 
assume variables in W  are discrete; however, all concepts 
are easily extended to incorporate continuous W .) Answer-
ing the causal question requires data, for example, a study 
sample. Although it is often assumed for statistical infer-
ence that the study sample is a random sample of the target 
population, such random sampling rarely occurs in practice. 
If the stratum-specific effects differ and the distribution of 
W  in the study sample differs from the distribution of W  
in the target population, the sample average treatment (or 
causal) effect

SATE = ( ) − ( )[ ]
=
∑1

1n
Y a Y a

i

n

i i ′

(where i indexes the n individuals in the study 
sample, i = 1, ..., n) may not equal the population average 
treatment effect. It is helpful to distinguish threats to 
validity that arise after enumeration of the study sample, 
which we define as threats to internal validity, from threats 
to validity due to eli-gibility and enrollment of study 
subjects, which we define as threats to external validity. We 
define an estimator as inter-nally valid when the estimator 
of association in the study sample is an unbiased 
estimator of the sample average treat-ment effect or the 
average treatment effect in the population of which the 
study sample constitutes a simple random sam-ple (although 
this latter population is usually hypothetical as random 
sampling to generate a study sample is rare in public health 
research). We define a causal estimator to be externally 

valid when it is an unbiased estimator of the average treatment 
effect in the target population.

DEFINING THE TARGET POPULATION
Ideally, the overall study goal would drive the choice 

of the target population, the study sample would be randomly 
sampled from that target population, and exposure would 
be randomly assigned within the study sample such that the 
sample average treatment effect would equal the population 
average treatment effect in expectation. However, typically, an 
investigator has a causal question and a study sample within 
which to conduct analysis. After the research has been con-
ducted, the investigator would like to know whether their 
results are “generalizable” to the population from which the 
study sample was drawn or “transportable” to an external tar-
get population.

Generalizability is a characteristic of the relationship 
between results from a specific study sample and a specific 
target population, not a characteristic of a study alone. There-
fore, to make meaningful inference about the generalizability 
of study results, the target population of interest must be well 
defined.9,16–19 Study results may be generalizable to one spe-
cific target population but not another. Comparisons between 
the target population and study sample should consider differ-
ences in patient characteristics (exchangeability), details of the 
intervention (treatment versions), and patterns of interference.

There are several types of target populations that may 
be of interest,15 which can be classified according to their 
relationship with the sample. First, when the target popula-
tion is not explicitly described, the implicit assumption is that 
the target population of interest is the study sample itself, or 
the hypothetical population from which the study sample was 
randomly sampled; this population is described by a (typical) 
paper’s so-called Table 1. This is a commonly assumed target 
population in statistical and causal inference. However, it is 
almost never the case that the study sample is a simple random 
sample or census of any target population of substantive inter-
est. Often research is conducted to inform decisions about a 
population at least somewhat different than that under study, or 
at the very least to inform decisions about the same population 
in the future. Second, we may be interested in a target popula-
tion from which the study sample was sampled, but where the 
sampling was not at random. In this case, the sample average 
treatment effect will typically differ from population average 
treatment effect. In statistics and economics, this difference 
has been called “sampling selection bias.”3,4,20,21 Finally, we 
may be interested in a target population that is distinct from 
the study sample. If the study sample is neither a census nor a 
(possibly biased) sample from the target population, we face 
a problem of transportability rather than generalizability,2 and 
additional assumptions or information are needed to estimate 
the effect of interest in the target population.



ASSUMPTIONS
Determining a set of assumptions sufficient to identify a 

causal parameter applicable to a particular set of individuals is 
a fundamental step in the process of causal inference. Identifi-
cation involves writing a well-defined function of the distribu-
tion of potential outcomes in terms of a well-defined function 
of the distribution of the observed data. Within a study sample, 
the fundamental problem of causal inference can be framed 
as a missing data problem: we never observe all potential out-
comes for subjects in our study sample and thus assumptions 
are required for parameter identification.22,23 Sufficient sets of 
assumptions are well described in the literature for identifica-
tion of a sample average treatment effect (i.e., for an internally 
valid estimate). One such sufficient set of assumptions includes 
(1) on average, the outcomes of persons who received treat-
ment a equal the potential outcomes of persons who received 
treatment a′ had they received treatment a and vice versa 
(exchangeability), perhaps within strata of a set of covariates, Z 
(conditional exchangeability).24 This is often referred to as the 
randomization or no unmeasured confounders assumption. (2) 
There is a nonzero probability of exposure within every stratum 
defined by Z  (positivity, which holds trivially if Z is empty). (3) 
There are no versions of treatment other than those defined by 
A (treatment version irrelevance, sometimes referred to as con-
sistency).25–28 (4) One person’s exposure does not affect another 
person’s outcome (no interference).29,30 (5) Outcome, treatment, 
and covariates are measured without error. We also require that 
all models be correctly specified, including the structural model 
and any parametric or semiparametric models used to describe 
associations between covariates and exposure or outcome. Most 
of these assumptions may be met in expectation if we conduct 
a randomized controlled trial. These assumptions may be less 
plausible in the observational setting where the treatment 
assignment mechanism is not known.1,31,32

Just as we never observe all potential outcomes for 
subjects in our study sample,23,26,27 when we try to expand 
inference beyond the study sample to a particular target popu-
lation, we typically do not observe any potential outcomes for 
subjects in our target population who were not selected into 
the study sample (unless additional data sources are available 
beyond the study sample). Assuming the sample average treat-
ment effect is identifiable, the population average treatment 
effect will be identifiable when the sampling mechanism giv-
ing rise to the study sample is known (e.g., if the study sample 
is known to be a random sample from the target population). 
If the sampling mechanism is not known, additional assump-
tions are required to identify the population average treatment 
effect.

For external validity, it is sufficient to assume, first, that 
the participants included in the study sample are exchangeable 
with members of the target population who were not sampled, 
perhaps conditional on pretreatment characteristics W  (condi-
tional exchangeability between those sampled and those not 
sampled)6:

 

S Y x W x a a⊥ =( ) | ,for ′ (3)

where S  is an indicator of membership in the study sample. 
Enrollment into the sample is typically both under the control of 
the researcher (in designing a recruitment strategy) and under 
the control of the participants (in deciding whether to partici-
pate). The set of characteristics W  should be chosen such that 
(3) is considered plausible. Judging whether a set of character-
istics W  is sufficient to satisfy this independence assumption
may be a difficult task. One way to make this judgment more
transparent is to explicitly represent the assumed data-gener-
ating mechanism using a directed acyclic graph (DAG).33 The
assumption encoded in (3) can then be verified by inspection of
the DAG2,6,34–36 as has been recommended for determining the
set of covariates sufficient for confounder control for internal
validity.33,37,38 Second, we assume that, within strata of W, all
subjects in the target population have some nonzero probability
of being selected into the sample (analogous to positivity):

0 1 0< = =( ) < =( )P S W w w P W w| for all such that

Third, we assume the same distribution of versions of 
treatment in the study sample and the target population (treat-
ment version irrelevance is a special case). This may be a strong 
assumption when the delivery mechanism for treatment differs 
dramatically between the study sample and the target population 
(e.g., treatment given to trial participants may have been accom-
panied by more adherence education and supportive services, as 
well as Hawthorne effects due to trial participation).8,39 Fourth, 
we assume no interference29,30 in the target population and the 
study sample (although these results can be extended to sce-
narios where the pattern of interference is the same in the target 
population and the study sample). Fifth, we assume no measure-
ment error, including of W . We also require correct model(s) 
specification for any parametric or semiparametric models used 
to describe associations between covariates and outcome or any 
models used to describe the sampling mechanism. Assumptions 
sufficient for identification of a causal effect in the target pop-
ulation may, at first glance, look similar to those required for 
identification of a causal effect in the study sample.5,40 However, 
assumptions about the relationships between the potential out-
comes and the sampling mechanism are sufficient for external 
validity, compared with the case of internal validity for which 
assumptions about the relationships between the potential out-
comes and the treatment assignment mechanism are sufficient. 
As assumptions sufficient for internal validity are met in expec-
tation when treatment is randomized, assumptions sufficient for 
external validity will be met in expectation if the study sample is 
a simple random sample of the target population.

ESTIMATORS
If identifying assumptions hold, a generalization of 

the g-formula13 (or adjustment formula)14 or inverse prob-
ability of sampling weights can be employed to estimate the 



population average treatment effect. These estimators use data 
from the study sample on the exposure–outcome relationship 
and data from the target population on either (i) the distri-
bution of W  for the g-formula estimator or (ii) the sampling 
probabilities conditional on W  for the inverse probability of 
sampling estimator.

Recall that the g-formula13,14 to account for nonrandom 
treatment assignment is

E Y a E Y A a Z z P Z z
z

( )[ ] = = =[ ] =( )∑ | ,

where Z  is a set of covariates sufficient for condi-
tional exchangeability between treatment arms, that is, 
A Y x Z x a a⊥ =( ) | ,for ′. Assuming the study sample is a 
random sample of the target population, nonparametric g-for-
mula estimators will be consistent for the population average 
treatment effect. However, if the study sample was not ran-
domly sampled from the target population, consistent estima-
tors (based on the g-formula or otherwise) may not exist.4

Nonetheless, if in this setting we can find a set W  that 
establishes conditional exchangeability between the sampled 
and unsampled, that is, (3), and treatment A  is assigned at 
random to the study sample, then

E Y a E Y A a W w S P W w
w

( )[ ] = = = =[ ] =( )∑ | , , 1  (4)

A proof of this equivalence is given in Appendix A. Graph-
ical conditions for determining the validity of (4) are provided 
in Bareinboim and Pearl.3 If A was not randomly assigned in 
the sample and one is willing to assume for some set of covari-
ates W ′  that (3) holds and also A Y x W S x a a⊥ = =( ) | , ,′ ′1for ,  
then (4) holds with W ′  in place of W . In either case, the con-
ditional expectation E Y A a W w S| , ,= = =[ ]1  is identifiable
from the study sample. If an external source of data (not from 
the study sample) is available which identifies P W w=( ), then
the population average treatment effect is identifiable via (4). 
This suggests the following substitution (or plug-in) estimator 
for the population average treatment effect:

w

E Y A a W w S E Y A a W w S

P W w

∑ = = =[ ] − = = = 

=( )

� �

�

| , , [ | , , ]1 1′

where E Y A x W w S� | = = =[ ], , 1  for x a a= , ′ is based on data
from the study sample and P W w� =( ) is an estimator of the dis-
tribution of W  in the target population based on external data.

The inverse probability of sampling weighted estimator 
arises from a different but equivalent expression for E Y a( )[ ].
In particular, again assuming conditional exchangeability 
between sampled and unsampled individuals (3), and random 
treatment assignment within the study sample, it follows that

E Y a
E YI A a S P S W

E I A a S P S W
( )[ ] =

= =( )[ ] =
= =( ) =

, / ( | )

[ , ] / ( | )
.

1 1

1 1
 (5)

A proof of this equivalence is also given in Appendix A. 
Expression (5) suggests instead the following plug-in estima-
tor for the population average treatment effect:
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where G w P S W w( ) = = =( )−ˆ |1 1
 and ˆ |P S W w= =( )1  is an

estimator of the conditional probability of study enrollment 
based on an external source of data from the target popula-
tion. If treatment is not randomly assigned within the study 
sample (e.g., as in an observational study), inverse probability 
of treatment weights41 can be multiplied by G Wi( ) to simulta-
neously control for confounding.

The inverse probability of sampling and g-formula/trans-
port formula estimators may give different results, particularly 
due to different modeling assumptions of the two approaches. 
A formal comparison of the two methods and a sufficient con-
dition under which they will yield the same results when non-
parametric estimators are employed is given in Appendix B. In 
settings where it is feasible to utilize both estimators, we will in 
general have a greater degree of confidence in the results when 
the two estimates are similar. Substantial differences between 
the two estimates could indicate possible violations of one or 
more of the assumptions being invoked.

EXAMPLE
To demonstrate how the methods described above can 

be used to estimate the population average treatment effect 
when the study sample is not a random sample of the tar-
get population, consider an arbitrarily large (infinite) target 
population where W1 and W2 are two independent Bernoulli 
random variables with expectations 0.15 and 0.20, respec-
tively; Y ( )1  and Y ( )0  are Bernoulli random variables where 
P Y a W W a W W aW W( ) | , . . . . .= = − + + −( )1 0 1073 0 05 0 20 0 20 0 151 2 1 2 1 2
for a = 0 1, ; and A is Bernoulli with mean 0.5 and indepen-
dent of W W Y Y1 2 1 0, , , ( )( ) and . For this data-generating mecha-
nism, E Y[ ( ) ] .1 1 0 123= =  and E Y[ ] .0 1 0 177( ) = = , such that
the population average treatment effect (×100%) is −5.5%. 
A study sample of n = 2 000,  individuals was simulated by 
selecting a biased sample from the target population. Specifi-
cally, 320, 480, 480 and 720 individuals were randomly sam-
pled from strata defined by W W1 20 0= =( ), , W W1 21 0= =( ), ,
W W1 20 1= =( ), , and W W1 21 1= =( ), . As in many trials, this
sampling scheme oversampled participants at greater risk of 
the outcome (W1 1=  or W2 1= ). For the n = 2 000,  individu-
als in the study sample, the sample average treatment effect 
(×100%) was (0.250–0.356) × 100 = −10.7%. The simulated 
observed study data, W W A1 2, , , and Y , are given in Table 1. 
Additionally, a random sample of m = 50 000,  individuals 
from the target population was generated for which W W1 2, , 
and S  were observed (Table 2).



Given this realization of the data, the empirical risk 
difference (×100%) in the study sample between individu-
als with A = 1 and A = 0 is −13.1% (Table 3). On the other
hand,4 the estimate of the population average treatment 
effect (×100%) using the nonparametric g-(transport) for-
mula is −5.4 and using inverse probability of sampling 
weights is −5.3%. As expected, the results from these 
two approaches are similar because we used nonparamet-
ric estimators of ( | , , , )P Y A a W w W w S= = = = =1 11 1 2 2  
and P W w W w( , )1 1 2 2= =  in the g-formula approach and
P S W w W w( | , )= = =1 1 1 2 2  in the inverse probability of sam-
pling approach. All calculations for this example appear in 
Appendix C.29

TRANSPORTABILITY
Generalizing results to a target population which 

includes as members those persons included in the study 
sample differs from transporting results to a target popula-
tion of which the study sample is not a subset.42 That is, in 
a transportability problem,43 the study sample is imagined 
to have arisen from a population that is distinct from the tar-
get population. Individuals within the target population have 
zero probability of being selected into the study sample when 
transporting study results, violating the positivity assumption 
as defined above. For transporting results, a different positiv-
ity assumption can be presumed

0 1 0< = =( ) < =( )P S W w w P W w* | for all such that

where P E( ) ( )⋅ ⋅and  denote probability and expectation in 
the target population as above, and * *P E⋅() ⋅()and  denote
probability and expectation with respect to the superpopu-
lation that gave rise to the study sample. Furthermore, the 
exchangeability assumption for transporting results is quali-
tatively different. When transporting results, it is sometimes 
sufficient to assume E Y a S W w E Y a W w* | , |( ) = =[ ] = ( ) =[ ]1  
rather than (3). However, if S  is associated with post-treat-
ment covariates, there may not be any set of covariates W  
which satisfies E Y a S W w E Y a W w* | , |( ) = =[ ] = ( ) =[ ]1 .
Other distinctions between generalizability and transport-
ability problems are beyond the scope of this article and are 
discussed elsewhere.6 Methods for handling both selection 
and transportability problems are surveyed by Bareinboim 
and colleagues.3,4,44

DISCUSSION
To ensure an estimate is generalizable (in expecta-

tion) to a particular target population it would be sufficient to 
draw a study sample that is a random sample from that target 
population.5 However, beyond the logistical, financial, and 
ethical challenges to conducting such a study, in certain cir-
cumstances, a study sample that is representative of the target 
population may be undesirable.9,10 When first exploring the 
existence of a causal effect, epidemiologists may purposefully 
undertake nonrandom sample selection to increase statistical 
efficiency, to match or restrict on important confounders, or to 
allow estimation of subgroup effects.

TABLE 2. Data from a Random Sample from the Target 
Population (m = 50,000)

W1 W2 S Number

0 0 0 33,498

0 0 1 320

0 1 0 8,162

0 1 1 480

1 0 0 5,556

1 0 1 480

1 1 0 784

1 1 1 720

Total: 50,000

W1
 and W2 are the same pretreatment covariates defined in Table 1, measured in a

random sample from the target population. S  is an indicator of further selection from the 
target population into the study sample.

TABLE 3. Joint Distribution of Treatment A and Outcome Y  
in the Target Population and Data from Nonrandom Study 
Sample from Table 1 (n = 2,000)

Target Population (Probabilities) Study Sample (n = 2,000)

Y = 0 Y = 1 Risk Y = 0 Y = 1 Risk

A = 0 0.414 0.089 0.177 A = 0 643 383 0.373

A = 1 0.439 0.061 0.123 A = 1 738 236 0.242

Risk difference: −0.055 −0.131

TABLE 1. Data from a Nonrandom Study Sample (n = 2,000)

W1 W2 A Y Number

0 0 0 0 143

0 0 0 1 22

0 0 1 0 141

0 0 1 1 14

0 1 0 0 172

0 1 0 1 72

0 1 1 0 178

0 1 1 1 58

1 0 0 0 166

1 0 0 1 82

1 0 1 0 171

1 0 1 1 61

1 1 0 0 162

1 1 0 1 207

1 1 1 0 248

1 1 1 1 103

Total: 2,000

W1 and W2 are pretreatment covariates that modify the effect of treatment A on
outcome Y



Epidemiologists have been primarily concerned with 
the internal validity of effect estimates. However, the utility 
of an effect estimate for planning purposes and policy deci-
sion making will depend on both internal and external valid-
ity. For example, an internally valid estimate with extremely 
poor external validity may be of less use than an estimate 
with some internal bias but good external validity. External 
validity of an effect estimate will be threatened by the degree 
to which the prevalence of the effect measure modifiers dif-
fers in the study sample compared with the target population, 
as well as the magnitude of the modification.7 For example, 
Greenhouse et al.17 described a meta-analysis of trials of anti-
depressants in adolescents that suggested an increased risk 
of suicide among treated subjects. However, the majority of 
the meta-analyzed trials excluded participants with the most 
severe depression who would have experienced the greatest 
benefits f rom t he t herapy.17 I n t his c ase, w hile t rial e ffects 
were internally valid, the lack of external validity had serious 
implications for policy: the Food and Drug Administration 
used the meta-analysis to justify issuing a black box warn-
ing advising physicians and patients of increased suicide risk, 
which resulted in limiting potentially beneficial t reatment 
options for depressed adolescent patients.17,35 This example 
highlights the importance of balancing study design decisions 
to maximize both internal and external validity; internal and 
external bias both exist on a continuous scales (as degrees 
rather than as dichotomies) and relatively minor violations 
of internal validity may be tolerable in exchange for greater 
external validity.

Many of the assumptions and estimators we describe 
above may be familiar to the reader versed in threats to 
internal validity due to selection bias. Indeed, violations of 
Equation (3), in particular, may be interpreted as a selection 
bias problem (internal validity) or a generalizability problem 
(external validity). We view the process of enumerating the 
study sample as determining the generalizability or external 
validity of study results, while exclusion of participants due 
to drop out or missing data after the study sample has been 
defined determines the internal validity of study results. One 
might imagine the study as a randomized trial and ask whether 
selection occurred before or after enumeration of the study 
sample and treatment assignment (external or internal valid-
ity, respectfully). This distinction may be hypothetical, but is 
in harmony with existing thought experiments in epidemiol-
ogy, such as framing analysis of observational data as if it 
arose from a randomized trial.1,31,32

We have discussed a g-formula estimator and inverse 
probability of sampling weighted estimator for generalizing 
results from a specified study sample to a specified target pop-
ulation. Doubly-robust estimation of the population average 
treatment effect is an area for future research. Such doubly-
robust estimators would be consistent if either the model used 
to adjust for nonrandom sampling into the study or the model 
used to specify W -specific treatment effects is correct 
(without 

requiring both models be correct). Some doubly-robust esti-
mators that might be easily adapted to the generalizability 
problem are those that have been developed for problems of 
missing outcome data in a trial.45–47

Commentaries on the lack of generalizability of ran-
domized trials typically advocate evaluating a lengthy check 
list of potential determinants of external validity.18,19,48,49 
We argue that evaluations of generalizability could be more 
straightforward if considered quantitatively within the 
potential outcomes framework or the (logically equivalent) 
graphical models framework. Specifically, understanding the 
mechanism by which differences between the sample and the 
target populations arise is useful for identifying methods to 
account for those differences.

Finally, distinguishing internal and external threats 
to validity is useful for determining which parameters in 
the study sample or target population are estimable. When 
collider stratification bias due to selection is present in a 
study, it may threaten causal inference being made for any 
population,50 even the study sample, and depending on the 
magnitude of the bias, may preclude attempts to generalize 
results to any specified target population. In contrast, if an 
analysis of a study is believed to have sufficient control 
of confounding and selection bias and differences in the 
average treatment effect can be attributed to nonrandom 
sampling of the study population, then (given the above 
assumptions) methods exist to generalize results to user-
specified target population.31 Understanding the source 
of the different biases that combine to influence a final 
estimate will help make analysis decisions that minimize 
the total bias. Generalizing effect estimates to the appro-
priate target population will improve their utility, and 
better inform implementation of interventions in target 
populations.
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APPENDIX A

Proof of (4):
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(consistency/treatment version irrelevance)

Proof of (5):
Similar to the proof of (4), under the stated assumptions 

it is straightforward to show:
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which together imply (5).



APPENDIX B
Nonequivalence of the nonparametric g-formula and 

inverse probability of sampling weighted estimator when 
weights are estimated nonparametrically.

Suppose we observe ( , , )W A Yi i i  for i n= 1,...,  individu-
als in the study sample. Suppose we also observe ( , )W Sj j  for 
j m= 1, ...,  individuals based on a random sample from the tar-
get population.

The nonparametric g-formula based estimator is as 
follows:
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w
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where the conditional expectation is estimated by data 
from the study sample, that is,
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and P W w�( )=  is a nonparametric estimator based on data
from the target population, that is,
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For notational convenience, let 
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g-formula estimator can be written
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Now consider the nonparametric inverse probability of sam-
pling weighted estimator is
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where G Wi i( ) is the inverse of the estimated probability of being 
sampled conditional on covariates Wi. Equivalently, we can write 
the inverse probability of sampling weighted estimator as
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Using the notation above, we have
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Thus the nonparametric g-formula estimator (6) and the non-
parametric inverse probability of sampling weighted estimator 
(7) will be equal if
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But this need not be true in general.

APPENDIX C
Calculations for example

Population average treatment effect (PATE):

E Y Y1 0 0 1228 0 1773 0 0545( ) − ( )[ ] = − = −. . .

Sample average treatment effect (SATE):
0 2495 0 3560 0 1065. . .− = −

Empirical risk difference in the study sample:
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Estimation of the PATE from the study sample using the 
g-formula:
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Estimation of the PATE from the study sample using inverse 

probability weighting:

First, estimate G w S W wP( ) | .= = =( ) 
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Then the inverse probability of sampling weighted esti-
mate equals:

w i

n

i i i

w i

n

i i

w

G w Y I W w A

G w I W w A

∑ ∑
∑ ∑

( ) = =( )





( ) = =( )





−

=

=

1

1

1

1

,

,

∑∑ ∑
∑ ∑

( ) = =( )





( ) = =( )





=

=

G w Y I W w A

G w I W w A

i

n

i i i

w i

n

i i

1

1

0

0

,

,

=
× + × + × + ×

× + × +
105 68 14 18 00 58 12 58 61 2 09 103

105 68 155 18 00 236

. . . .

. . 112 58 232 2 09 351
105 68 22 18 00 72 12 58 82 2 09 207

10

. .
. . . .

× + ×

−
× + × + × + ×

55 68 165 18 00 244 12 58 248 2 09 369. . . .× + × + × + ×

= − = − = −
3506 01

24280 18

5084 84

25719 82
0 1444 0 1977 0 0533

.

.

.

.
. . .




