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To the Editor:

Causal diagrams1,2 have become wide-
spread in epidemiologic research. 

Recently developed single-world inter-
vention graphs explicitly connect the 
potential outcomes framework of causal 
inference with causal diagrams.3 Here, 
we provide a practical example demon-
strating how single-world intervention 
graphs can supplement traditional causal 
diagrams.

A randomized controlled trial is 
conducted to evaluate whether a vaccine 
(A = 1 if vaccine, 0 if placebo) decreases 
the risk of disease (Y = 1  if disease, 0 
otherwise). Individuals are enrolled at 
baseline, randomized to vaccine or pla-
cebo, followed 6 months, and monitored 
for disease. The vaccine is more likely 
to result in injection site pain (W = 1  if 
pain, 0 otherwise), and those with pain 
are more likely to drop out and have 
unobserved outcomes ( S = 1 if dropped 
out, 0 otherwise). Participants with poor 
(unmeasured) health (U = 1 if poor 
health, 0 otherwise) are more likely to 
experience pain and get the disease. The 
scenario is summarized in Figure A.

There is selection bias if we con-
dition on not dropping out ( S = 0 ) 
because the path A W U Y→ ← →  is 
opened. Stratifying on W does not block 

this path and may in fact induce more 
bias. Based on this causal diagram, it is 
not immediately clear how to identify 
the causal effect of the vaccine using the 
observed data (although see references 
4, 5, or 6).

The single-world intervention 
graph in Figure B, however, clearly dis-
plays the independencies necessary to 
identify the effect of the vaccine from 
the observed data as follows (here, a 
variable X a( )  represents the value of
X  had the individual received vaccine 

level a ):
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The first equality holds by the law of 
total probability, the second by d-sepa-
ration of S a( )  and Y a( )  given W a( ) , the
third by d-separation of W a( )  and A ,

the fourth by d-separation of Y a( )  and
A  given W a( )  and S a( ) , and the last

by causal consistency. All components 
of the final line of the equation, which 
is Robins’ g-formula,7 can be estimated 
from observed data. The key insight 
provided by the single-world interven-
tion graph is that S a( )  is independent of
Y a( )  given W a( ) , but conditioning on
W a( )  does not open any paths between
A  and Y a( ) .

We conducted a simulation of 
1,000,000 individuals for illustration 
(SAS code is available in the eAppen-
dix; http://links.lww.com/EDE/B306). 
Individuals were randomly assigned 
vaccine with probability 0.5 and had 
probability 0.3 of being in poor health. 
The probability of injection site pain for 
healthy individuals was 0.2 if assigned 
placebo and 0.6 if assigned vaccine. 
Poor health increased the probability 
of pain by 0.3. The probability of drop-
ping out was 0.1 for those without pain 
and 0.9 for those with pain. Finally, 
the probability of disease was 0.3 for 
healthy individuals assigned placebo, 
and it was increased by 0.5 by poor 
health and decreased by 0.2 by the 
vaccine.

The true effect of the vaccine on 
the disease was a 0.20 decrease in risk. 
The complete case analysis gave a 0.24 
decrease in risk. Stratifying on injec-
tion site pain worsened the bias, giv-
ing a 0.26 decrease in risk. Finally, the 
g-formula with empirically estimated
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A Practical Example 
Demonstrating the 

Utility of Single-world 
Intervention Graphs

FIGURE.  The causal diagram (A) corresponding to the vaccine trial. The single-world 
intervention template (B), the template used to construct single-world intervention 
graphs, corresponding to the vaccine trial is constructed by splitting the treatment 
node of the causal diagram, and replacing all descendants of the assigned treatment 
with their potential outcomes.
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expectations and probabilities yielded 
the true decrease of 0.20.

An anonymous reviewer noted that 
the derivation above also holds with cer-
tain additional edges in the causal diagram, 
such as W Y→  or A S→ . These would 
lead to, respectively, edges W A Y a( ) → ( )
or a S a→ ( )  in the single-world inter-
vention graph. In the latter case, S a( )  is
d-separated from Y a( )  given W a( )  and a
, thus S a( )  would remain independent of
Y a( )  conditional on W a( )  (Theorem 12

in Richardson and Robins3). The reviewer 

also noted that the derivation fails with 
unmeasured confounding between A  and 
W  or between S  and Y .
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Statistical Power for 
Trend-in-trend Design

To the Editor:

Unmeasured confounding is often 
a major concern in observational 

studies. The recent article by Ji et al.1 
proposed a novel design known as trend-
in-trend that, under certain assumptions 
including a strong time trend in exposure 
prevalence, provides unbiased estimates 
of the effects of exposures in the presence 
of unmeasured confounding. It accom-
plishes this by examining trends in out-
come occurrence as a function of trends 
in exposure prevalence across strata 
defined by the cumulative probability 
of exposure, which models exposure as 
function of measured baseline variables 
and effectively stratifies on rate of adop-
tion of the exposure. It therefore extends 
and improves on studies using calendar 
time as an instrumental variable,2–4 elimi-
nating its reliance on the assumption of an 
absence of a secular trend in the outcome.

Several factors affect the statistical 
power/detectable alternative of trend-in-
trend studies, although we know of no 
closed-form solution to their estimation. 
We therefore developed a Monte Carlo 
simulation approach for estimating sta-
tistical power or detectable alternative 
when planning a trend-in-trend study. 
This approach requires the investiga-
tor to specify six parameters: (1) the 
type-1 error rate; (2) the probability of 
a study subject experiencing the study 
outcome during any study interval; (3) 
the c statistic of the cumulative probabil-
ity of exposure model5; (4) the number 
of cumulative probability of exposure 
strata into which the population is 

divided; (5) the shape of the exposure 
trend, expressed as a linear or quadratic 
function of time on log scale; and (6) the 
desired statistical power or minimum 
detectable causal odds ratio. The simu-
lation procedure (which has been incor-
porated into the TrendInTrend package 
for the R: https://cran.r-project.org/web/
packages/TrendInTrend/index.html) 
provides an estimate for either the sta-
tistical power or the minimum detectable 
odds ratio, whichever was specified in 
(6) above. The eAppendix (http://links.
lww.com/EDE/B308) provides techni-
cal information about the simulation
procedure.

To illustrate the simulations and 
assess the influence of the required 
parameters, we estimated the statistical 
power of a hypothetical trend-in-trend 
study under different scenarios. We 
assumed (1) a type-1 error rate of 5%; 
(2) a proportion of the population expe-
riencing the outcome during any study
interval of 0.007, 0.018, and 0.049; (3)
a c statistic for the cumulative probabil-
ity of exposure model of 0.50, 0.60, and
0.75; (4) a number of strata of 5 and 10;
(5) a linear time trend in exposure preva-
lence with slopes (αt) 0.07 and 0.20 rela-
tive percent over the study period (Figure
A). We assumed that the study period
was divided into 10 time intervals, and
generated 500 datasets of size 10,000
(1,000 of whom were ever-exposed) for
each scenario.

The Figure B–D displays simu-
lated statistical power over odds ratios 
ranging from 1 to 2, with the dashed 
and the dotted lines representing weak 
( . )αt = 0 07  and strong ( . )αt = 0 20  time 
trends in exposure, respectively. The Fig-
ure B shows the effect of the c statistic of 
the cumulative probability of exposure 
model and strength of exposure trend on 
power when the outcome rate over the 
entire study period is set to 0.015 and the 
number of cumulative probability strata 
is set to 5. The strength of exposure 
trend has a bigger influence on power 
than does the c statistic, although c sta-
tistic does have an observable effect. The 
Figure C shows the influence of the out-
come probability when the c statistic is 
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