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We use simple examples to show how the bias and standard error of an estimator depend in part on the type
of estimator chosen from among parametric, nonparametric, and semiparametric candidates. We estimated the
cumulative distribution function in the presence of missing data with and without an auxiliary variable. Simulation
results mirrored theoretical expectations about the bias and precision of candidate estimators. Specifically,
parametric maximum likelihood estimators performed best but must be “omnisciently” correctly specified. An
augmented inverse probability–weighted (IPW) semiparametric estimator performed best among candidate
estimators that were not omnisciently correct. In one setting, the augmented IPW estimator reduced the standard
error by nearly 30%, compared with a standard Horvitz-Thompson IPW estimator; such a standard error reduction
is equivalent to doubling the sample size. These results highlight the gains and losses that can be incurred when
model assumptions are made in any analysis.

bias; estimators; nonparametric estimators; parametric estimators; precision; semiparametric estimators

Abbreviations: IPW, inverse probability weighted; MLE, maximum likelihood estimator; NPF, nonparametric full data; SPA,
semiparametric augmented inverse probability weighted; SPF, semiparametric full data; WF, Weibull full data; WG, Weibull g-
computation.

Accuracy is a combination of validity (i.e., lack of bias)
and precision (i.e., small standard error) (1, pp. 128, 231).
Here accuracy tradeoffs are illustrated between parametric
maximum likelihood, nonparametric, and semiparametric
estimators. A simple yet nontrivial example is used to show
how the bias and standard error of an estimator depend on
the type of estimator chosen.

Before discussing types of estimators, the target parame-
ter should be carefully defined. All information about some
outcome of interest, say Y , is captured by the risk function or
cumulative distribution function. Therefore, our parameter
of interest is the risk function of Y , defined as FY(y) =
P(Y ≤ y) (2), where the probability P(Y ≤ y) is defined
as

∑
x≤y p(x) for discrete Y with mass function p(y) =

P(Y = y), or as
∫ y
−∞ f (u)du for continuous Y with density

function f (y). Many common parameters can be calculated
directly from the risk function (e.g., mean, median, or other
percentiles). To highlight differences between types of esti-

mators, we will study the (all too common) case where there
is missing data for the outcome of interest.

To fix ideas, say we are given n = 100 numbers from a
positively distributed outcome of interest Y (e.g., biomarker
levels, lifetimes). Assume the sample units were indepen-
dently and randomly drawn from an infinite population.

Estimators can be classified in many ways. One useful
classification entails whether the estimators arise from para-
metric, nonparametric, or semiparametric models. Paramet-
ric models have a finite number of parameters. For example,
without covariates, an exponential model for a distribution
function has 1 (rate) parameter. On the other hand, nonpara-
metric models (for continuously distributed variables) have
an infinite number of parameters. For example, assuming a
nonparametric model, we can estimate the risk FY(y) using
the Kaplan-Meier estimator (3). For semiparametric models,
the parameter space is split into a piece that is finite and a
piece that is infinite (4). As a canonical example, the Cox



model (5) has a linear predictor, which has a finite number of
parameters, and a reference hazard function, which is infinite
dimensional.

Given an observed random sample of size n, at one
extreme we make no assumption about the shape of the
distribution FY(y) and use a nonparametric maximum like-
lihood estimator (MLE) (i.e., F̂Y(y) = n−1 ∑n

i=1 I(Yi ≤ y)).
This nonparametric MLE places probability mass 1/n on
each of the n observed values of Y . Using the weak law
of large numbers (6, p. 232), this nonparametric MLE is a
pointwise asymptotically consistent estimator for any value
y of the distribution, regardless of the shape of the function
in the population. But because this nonparametric MLE is
unconstrained, it is not optimally precise if the data are
generated from a distribution in a particular finite-dimension
parametric model. That is, estimators that make constraints
based on a correct parametric form, or otherwise leverage
auxiliary information, can be more precise than the uncon-
strained nonparametric MLE.

In the absence of censored data, the above nonparametric
MLE is equivalent to the Kaplan-Meier estimator. But the
Kaplan-Meier estimator extends the above nonparametric
MLE to allow for independent right censoring of the data
Y (as the Turnbull (7) and Aalen-Johansen (8) estimators
extend the above nonparametric MLE to allow for arbitrary
censoring/truncation and estimation of subdistribution func-
tions for competing events, respectively).

At another extreme, assume the distribution is exponen-
tial, formally FY(y; λ) = 1 − exp(−y/λ), where λ is the
mean of Y . We often estimate λ by the MLE, say λ̂, and then
estimate the target (or interest) parameter with FY(y; λ̂). This
MLE is a pointwise asymptotically consistent estimator of
FY(y), if FY is a member of the family of exponential distri-
butions indexed by λ. If the population distribution function
FY is a member of the exponential distribution, then this
MLE attains the Cramér-Rao efficiency bound (6, p. 335)
and is therefore maximally precise. To be maximally precise
means that the estimator uses all the information relevant to
the parameter given by the combination of data and model
constraints. The exponential assumption can be relaxed by
instead supposing Y is a mixture of exponentials. In particu-
lar, assume the conditional distribution of Y given covariate
W = w is exponential with mean λ(w) = exp(τ0 + τ1w).
Auxiliary variables W are covariates that can help to more
accurately estimate the target parameter FY(y) when W is not
independent of Y (9). In scenarios with one or more auxiliary
variables, the parameter of interest FY(y) might be estimated
by first estimating the conditional distribution of Y given W
and the marginal distribution of W, and then using the rela-
tion FY(y) = ∫

w P(Y ≤ y|W = w) dFW(w) where FW(w) =
P(W ≤ w). If W is discrete, this relation can be expressed
simply as FY(y) = ∑

w P(Y ≤ y|W = w)P(W = w).
Alternatively, more flexible parametric MLEs can be

entertained, such as the 2-parameter Weibull model,
FY(y; α, λ) = 1 − exp{−(y/λ)α}, which can again be esti-
mated using the MLE (α̂, λ̂). Or even more flexible
parametric models with 3 or more parameters can be con-
sidered (10, 11). In turn, these models can be made more
flexible yet by adding covariate effects, as above. In at least

an informal sense, the limit of this process of relaxing the
constraints on parametric models leads toward the infinite-
dimensional nonparametric case.

Semiparametric estimators provide a third, or middle,
way. Say that we assume a semiparametric Cox proportional
hazards model (5) for the association between Y and W,
formally �(y|W) = �0(y) exp(βW) where �(y|W) is the
cumulative hazard function of Y at y given W, and �0(y) =
�(y|W = 0) is the cumulative reference hazard function.
The set of finite-dimensional parameters β are estimated by
the maximum partial likelihood estimator β̂, and, assuming
Y continuous, the infinite-dimensional parameter �0(.) can
be estimated using the Breslow estimator �̂0(.) (12). Then a
semiparametric estimator of the risk function FY(y; θ̂) is

n−1
n∑

i=1

mCox

(
Wi, y; θ̂

)
, (1)

where θ̂ = {β̂, �̂0(y)} and mCox(W, y; θ̂) = 1 −
exp{−�̂0(y) exp(β̂W)}. This estimator, with or without
right censoring, provides an estimate of FY(y) by averaging
the covariate-conditional estimates over the sample and
constrains the W, Y relationship to follow a proportional
hazards model.

We say that an estimator is valid if it is asymptotically
consistent—that is, the estimator converges in probability
to the true data generating value as the sample size n tends
toward infinity. For any of the above estimators to be valid
in this sense, the population function FY must be a possible
value of the limit of the estimator, for all values y, as n tends
toward infinity. This is always the case for the nonparametric
estimators we consider because these estimators remain con-
sistent with no constraints on the shape of the risk function.
On the other hand, when the true function FY does not satisfy
the model assumptions of the parametric or semiparametric
estimator employed, the best possible member of the family
is the member that most closely resembles the actual FY ,
which is sometimes called the “least false” parameter (13).
Choosing to estimate a least-false parameter is like allowing
a tolerance for bias. In certain settings, bias might be toler-
able in exchange for some benefit, such as precision, speed,
or ease.

Barring extra-data information, for the above estimators to
be optimally efficient, they must extract all the information
relevant to the parameter available in the data, which con-
sists of Y , and W in scenarios with an auxiliary covariate.
The parametric MLEs, when constraints are correct, auto-
matically maximally extract information from W, and the
nonparametric estimators we considered ignore the covari-
ate and so extract no information about Y present in W.
The semiparametric estimators, even when optimal, achieve
the Hájek-Le Cam semiparametric efficiency bound, which
is no smaller (and typically larger) than the Cramér-Rao
bound for the parametric maximum likelihood model under
consideration (4, 14–16). Next, we describe an experiment,
simulating data like those described above, to demonstrate
the accuracy (i.e., bias and variance) tradeoffs among a set of
estimators.



Table 1. Nonparametric, Semiparametric, and Parametric Estimators

Estimator, With Abbreviation Definitiona

Nonparametric

NPF: full data n−1 ∑n
i=1 I(Yi ≤ y)

NPO: observed data (
∑n

i=1 Ri)
−1 ∑n

i=1 RiI(Yi ≤ y)

Semiparametricb

SPF: semiparametric full data n−1 ∑n
i=1 mCox(Wi, y; θ̂)

SPO: observed data (
∑n

i=1 Ri)
−1 ∑n

i=1 RimCox(Wi, y; θ̂obs)

SPI: Horvitz-Thompson IPW n−1 ∑n
i=1

RiI(Yi≤y)

κ(Wi ;γ̂)

SPH: Hájek IPW
( ∑n

i=1 Ri/κ(Wi; γ̂)
)−1 n∑

i=1

RiI(Yi≤y)

κ(Wi ;γ̂)

SPG: g-computation n−1 ∑n
i=1 mCox

(
Wi, y; θ̂obs

)

SPA: augmented IP n−1 ∑n
i=1

{
RiI(Yi≤y)

κ(Wi ;γ̂)
−

[
Ri

κ(Wi ;γ̂)
− 1 mCox

(
Wi, y; θ̂obs

)}

Weibullc

WF: full data n−1 ∑n
i=1 mWei

(
Wi, y; τ̂0, τ̂1, α̂

)

WO: observed data
(∑n

i=1 Ri

)−1 ∑n
i=1 RimWei

(
Wi, y; τ̂obs

0 , τ̂obs
1 , α̂obs

)

WG: g-computation n−1 ∑n
i=1 mWei

(
Wi, y; τ̂obs

0 , τ̂obs
1 , α̂obs

)

Exponentiald

EF: exponential full data n−1 ∑n
i=1 mexp

(
Wi, y; τ̂0, τ̂1

)

EO: observed data
(∑n

i=1 Ri

)−1 ∑n
i=1 Rimexp

(
Wi, y; τ̂obs

0 , τ̂obs
1

)

EG: g-computation n−1 ∑n
i=1 mexp

(
Wi, y; τ̂obs

0 , τ̂obs
1

)

Abbreviations: EF, exponential full data; EG, exponential g-computation; EO, exponential observed data; IPW, inverse probability weighted;
MLE, maximum likelihood estimator; NPF, nonparametric full data; NPO, nonparametric observed data; SPA, semiparametric augmented
inverse probability weighted; SPF, semiparametric full data; SPG, semiparametric g-computation; SPH, semiparametric Hájek inverse probability
weighted; SPI, semiparametric Horvitz-Thompson inverse probability weighted; SPO, semiparametric observed data; WF, Weibull full data; WG,
Weibull g-computation; WO, Weibull observed data.

a Y is the outcome, R indicates Y is observed, and W is an auxiliary covariate.
b mCox(Wi, y; θ) = 1 − exp[−�0(y) exp(βWi)], where θ̂ and θ̂obs are the MLEs of θ = (�0, β) in the full and observed (i.e., R = 1) data,

respectively.
c mWei(Wi, y; τ0, τ1, α) = 1 − exp[−y/ exp (τ0 + τ1Wi)

α], where (τ̂0, τ̂1, α̂) and (τ̂obs
0 , τ̂obs

1 , α̂obs) are the MLEs of (τ0, τ1, α) in the full and
observed (i.e., R = 1) data, respectively.

d mexp(Wi, y; τ0, τ1) = 1−exp[−y/ exp(τ0 +τ1Wi)], where (τ̂0, τ̂1) and (τ̂obs
0 , τ̂obs

1 ) are the MLEs of (τ0, τ1) in the full and observed (i.e., R = 1)

For each scenario, approximately half the Y values are
missing. To generate missing data for Y , we draw an indi-
cator of being observed R, distributed as Bernoulli with
expectation [1 + exp{−(γ0 + γ1W)}]−1, where γ1 = ln(3)
or 0, and γ0 set such that P(R = 1) is approximately 1/2.

We consider 6 scenarios from a factorial experiment vary-
ing α = 1, .5, and the combination of (δ, γ1) as (0,0), (1,0),
and (1, ln(3)). These parameter choices correspond to the
following 6 scenarios: 1) exponential with no covariate (i.e.,
the covariate W is a constant 0); 2) exponential with a stan-
dard normal covariate that causes the outcome but not miss-
ingness; 3) exponential with a standard normal covariate
that causes the outcome and missingness; 4) Weibull with
no covariate; 5) Weibull with a standard normal covariate
that causes the outcome but not missingness; and 6) Weibull
with a standard normal covariate that causes the outcome and
missingness.

data, respectively.

METHODS

We generate 5,000 samples of n = 100 and 200 units, 
indexed by i, where Wi ∼ N(0, δ), that is,  Wi is mean 
zero Gaussian with standard deviation δ, and  Yi | Wi ∼ 
Weibull(α, λ(Wi)), where λ(w) = exp(τ0 + τ1w) is the 
scale parameter and α is the Weibull shape parameter, that 
is, P(Yi ≤ y|Wi) = 1 − exp[−(y/λ(Wi))

α]. When α = 1 the  
Weibull coincides with an exponential distribution, which 
corresponds to a constant hazard. When α > 1 (α < 1) there 
is an increasing (decreasing) hazard of Y . For all scenarios 
we set τ0 = 0 and  τ1 = ln(3), which corresponds to a strong 
association between W and Y (i.e., a unit increase in W is 
associated with a 3-fold increase in the hazard of Y when 
α = 1). Below, for convenience, we focus on the single 
parameter, the value for the marginal distribution function 
of Y at y = 1, or FY (1). The pattern of results should hold 
for any value y not in the extremity of the distribution of Y .



Figure 1. Bias and precision of the estimated probability Y ≤ 1 in 5,000 Monte Carlo simulation trials, each of sample size 100. A) Scenario
1: exponential with no covariate; B) scenario 2: exponential with a covariate that causes Y; C) scenario 3: exponential with a covariate that
causes Y and missingness. EF, exponential full data; EG, exponential g-computation; EO, exponential observed data; NPF, nonparametric
full data; NPO, nonparametric observed data; SPA, semiparametric augmented inverse probability weighted; SPF, semiparametric full data;
SPG, semiparametric g-computation; SPH, semiparametric Hájek inverse probability weighted; SPI, semiparametric Horvitz-Thompson inverse
probability weighted; SPO, semiparametric observed data; WF, Weibull full data; WG, Weibull g-computation; WO, Weibull observed data.



Figure 2. Bias and precision of the estimated probability Y ≤ 1 in 5,000 Monte Carlo simulation trials, each of sample size 100. 
A) Scenario 4: Weibull with no covariate; B) scenario 5: Weibull with a covariate that causes Y; C) scenario 6: Weibull with a covariate that 
causes Y and missingness. EF, exponential full data; EG, exponential g-computation; EO, exponential observed data; NPF, nonparametric 
full data; NPO, nonparametric observed data; SPA, semiparametric augmented inverse probability weighted; SPF, semiparametric full data; 
SPG, semiparametric g-computation; SPH, semiparametric Hájek inverse probability weighted; SPI, semiparametric Horvitz-Thompson inverse 
probability weighted; SPO, semiparametric observed data; WF, Weibull full data; WG, Weibull g-computation; WO, Weibull observed data.
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For each of the 6 scenarios, we fit 14 estimators, as
detailed in Table 1. First, we fit 2 nonparametric estimators,
which both ignore the auxiliary covariate. The first non-
parametric estimator was fitted to the full data (NPF) and
the second was fitted to the observed data (NPO), that is,
where R = 1. The NPF estimator ought to be approximately
unbiased in all scenarios, and the NPO estimator ought to
be likewise unbiased in scenarios 1, 2, 4, and 5 where the
missingness is completely at random. The NPF and NPO
estimators ought to be less precise than the correctly spec-
ified parametric models. Throughout, estimators using the
full data are provided for reference, as well as to make com-
parisons between estimators in the absence of missing data.

Second, we fit 6 semiparametric estimators. The first
semiparametric estimator, given as equation 1 above, used
the full data (SPF). The remaining 5 semiparametric esti-
mators used the observed data on Y , W when R = 1, with
or without using observed data on the auxiliary variable
W when R = 0. The second semiparametric estimator
was a simple complete-case estimator fitted on data where
R = 1 (semiparametric observed; SPO) and ignores W when
R = 0, and so ought to be biased in scenarios 3 and 6.
The third, fourth, and fifth semiparametric estimators were
Horvitz-Thompson (17) inverse probability weighted (IPW;
SPI), Hájek (18) IPW (SPH), and g-computation (SPG) (19)
estimators, which use W when R = 0. This Hájek estimator
is sometimes referred to as a modified ((20), see technical
points 12.1 and 12.2) or “stabilized” IPW estimator, but
this stabilization is distinct from that described by Robins
et al. (21). These semiparametric estimators ought to be
approximately unbiased in every scenario, with the SPG
estimator more precise than SPI and SPH. The sixth and
last semiparametric estimator was an augmented inverse
probability–weighted estimator (SPA), which also ought to
be approximately unbiased in all scenarios with precision
intermediate between the SPI and SPG (22–24). For esti-
mators using an inverse probability weight (i.e., SPI, SPH,
SPA), the model for missingness was a correctly specified
logistic regression model fitted by maximum likelihood.
For the SPA estimator, we combined information from the
semiparametric estimator given above (equation 1) with a
finite-dimension parametric logistic regression model for the
probability of being observed given W (23). Specifically, the
form of the SPA estimator is:

n−1
n∑

i=1

{RiI(Yi ≤ y)

κ(Wi; γ̂)
− Ri

κ(Wi; γ̂)
− 1 mCox

(
Wi, y; θ̂obs ,

(2)

θ

γ̂

metric estimator when an informative auxiliary variable is
present.

Third, we fit 3 parametric Weibull estimators. Each esti-
mator entailed fitting a correctly specified Weibull model for
Y given W via maximum likelihood and then marginalizing
over W to obtain an estimate of the population-average risk.
The first Weibull estimator was fitted to the full data (WF)
and ought to be approximately unbiased in all scenarios.
The second Weibull estimator was fitted to the observed
data (WO), where R = 1, and ought to be approximately
unbiased in scenarios 1, 2, 4, and 5. The third Weibull
estimator is a parametric g-computation estimator (WG).
The WG estimator ought to be approximately unbiased for
all 6 scenarios, most precise in scenarios 4–6, but somewhat
inefficient in scenarios 1–3 (compared with the correct expo-
nential submodel estimator).

Fourth, we fit 3 parametric exponential estimators, which
are akin to the Weibull estimators above, with the sole addi-
tional constraint that α = 1. The first exponential estimator
was fitted to the full data (EF), and ought to be approxi-
mately unbiased in scenarios 1–3 with maximal precision.
The second exponential estimator was fitted to the observed
data (EO) and ought to be approximately unbiased in sce-
narios 1 and 2. The third exponential estimator (EG) is
a parametric g-computation estimator. The EG estimator
ought to be approximately unbiased for scenarios 1–3.

We also explored the impact of an unmeasured common
cause of the outcome and missingness. Specifically, we
added a standard normal covariate with a log(3) coefficient
to the linear component of both data-generating models.
Therefore, 12 of the 14 estimators ought to be biased due
to misspecification, with only the NPF and semiparametric
full-data estimators expected to be approximately unbiased.

In addition to bias in the estimate of the risk function,
we quantify precision by the standard errors of each esti-
mator, which are approximated by the standard deviation
of the 5,000 simulation estimates. Experiments were per-
formed separately using SAS (SAS Institute, Inc., Cary,
North Carolina) and R (R Foundation for Statistical Com-
puting, Vienna, Austria).

RESULTS

Figures 1 and 2 group the 14 estimators in 3 panels each;
Figure 1 presents results from scenarios 1–3, and Figure 2
presents results from scenarios 4–6. Each scenario highlights
specific aspects of semiparametric theory. For example, for
scenario 1 (Figure 1A), the outcome data are exponential
and there is no covariate. In this scenario, as expected, all
estimators are unbiased with precision improving as the esti-
mators become more restrictive. For scenario 2 (Figure 1B),
the outcome data are exponential with a standard normal
covariate which does not predict missingness, and the results
are similar to scenario 1. For scenario 3 (Figure 1C), the
outcome data are exponential with a standard normal covari-
ate, which causes the outcome and missingness, and the
results illustrate how the observed data estimators are biased
due to incorrectly assuming missingness is completely at
random.

where ˆobs is the maximum partial likelihood estimator of β 
and the Breslow estimator of the cumulative baseline hazard 
function based only on the observed data where R = 1, 
κ(W; γ) denotes P(R = 1|W) under the assumed logistic 
regression model with finite-dimensional parameter γ, and  

is the MLE of γ. Notably, this SPA estimator is double 
robust and therefore consistent if either the model for the 
outcome Y or the missing data mechanism R is correct. All 
6 semiparametric estimators should be less precise than the 
correct parametric MLE, and more precise than the nonpara-



For scenario 4 (Figure 2A), the outcome data are Weibull
with no covariate, and results mimic the results for scenario
1, with the exception that the parametric exponential results
are biased due to the inappropriate restriction. For scenario
5 (Figure 2B), the outcome data are Weibull with a stan-
dard normal covariate that causes only the outcome, and
results again mimic the results for scenario 2, apart from
the exponential models being biased. Finally, for scenario
6 (Figure 2C), outcome data are Weibull with a standard
normal covariate that causes the outcome and missingness,
and results illustrate a combination of features seen in the
prior scenarios. In scenario 6, all observed data estimators
and the parametric exponential estimators are biased. The
WG and SPA estimators were unbiased and most precise
(with WG more precise than SPA).

Table 2 presents numerical summaries for scenarios 1
through 6. Many patterns are illustrated that are expected
based on parametric, nonparametric, and semiparametric
theory. For example, when the data are generated as expo-
nential but a (more flexible) Weibull model estimator is
used, there is a slight loss of precision due to the estimation
of an unnecessary (Weibull shape) parameter. Contrariwise,
when the data are generated as Weibull but a more restrictive
exponential model estimator is used, the estimator is biased
for the parameter of interest. Across estimators, there is
precision gained when estimators leverage the presence of
the informative auxiliary covariate, because more informa-
tion from the data is used. In the absence of missing data
(i.e., looking only at the 4 estimators based on full data),
there is no discernable advantage to the semiparametric
estimator. The augmented IPW estimator (which is semi-
parametric efficient (22)) is shown to improve on the simpler
IPW estimators (which are not semiparametric efficient),
specifically, compared with the Horvitz-Thompson IPW,
the augmented IPW standard error is reduced by 28% in
scenario C (1 − 0.062/0.086) and by 22% in scenario F (1
− 0.072/0.092). In the former case, this near 30% reduction
in the standard error equates to about a doubling of sample
size. The Hájek IPW estimator recovered a sizable portion of
the precision loss of the Horvitz-Thompson IPW estimator
compared with the augmented IPW estimator. The WG esti-
mator was slightly more precise than the SPA estimator. This
is expected because the parametric WG estimator encodes
more restrictions than the SPA estimator (i.e., the outcome
model is Weibull rather than Cox). These restrictions also
make the WG estimator less robust than the SPA estimator,
as demonstrated by analogy with the bias of the parametric
g-computation estimator (EG) in scenarios 4–6.

Analogous figures for the scenario with n = 200 are
provided in the Web material (Web Figures 1 and 2, available
at https://doi.org/10.1093/aje/kwab024). The pattern of
results is similar in the scenario with n = 200 shown
here. Also, Figures and tabular results for the scenario with
misspecified models (due to an unmeasured common cause
of the outcome and missingness) are provided in the Web
material (Web Figures 3 and 4, Web Table 1). As expected,
only the NPF and semiparametric full-data estimators were
unbiased in the misspecified scenario, and the Weibull
full-data estimator performed best among misspecified
approaches.

DISCUSSION

The moral of this story is an old one: It is best to be right.
To be most accurate, be an “omniscient” oracle and pick the
correct parametric model or rely on chance to accidentally
specify the model correctly. Failing omniscience or luck,
and at a small loss of precision, have enough foresight to
choose a flexible parametric model that incorporates the
correct parametric model as a special case. Failing omni-
science, luck, and such seemingly impossible foresight, the
semiparametric estimator performs best in the limited sce-
narios explored here. Of course, the parametric component
of the semiparametric model needs to be correct for the
semiparametric estimator to perform well. This point is
reinforced with the results of the misspecified scenario.
In our primary setting, the semiparametric model assumed
proportional hazards of the outcome for unit changes in the
auxiliary variable. Finally, all our estimators assumed data
were independent, and there was no measurement error.

In principle, we could specify a nonparametric model for
the distribution of Y condition on W and allow our non-
parametric estimators to depend on some data-adaptive func-
tion of the covariate W (e.g., a data-adaptive restricted
quadratic spline), but if W were more than a single vari-
able, restrictions would be needed to obtain well-functioning
data-adaptive nonparametric estimators, and while this is an
intriguing frontier, it is beyond the scope of the present work.

Of course, our results are only guaranteed to hold in sce-
narios like those explored. This lack of generality is a central
limitation of simulations, like those presented here. The sce-
narios explored were chosen to clearly illustrate theoretical
claims about semiparametric statistical theory that might not
be within the typical training of epidemiologists. Moreover,
our results pertain to the set of estimators explored. We
did not explore confidence interval coverage probability or
length, which are helpful metrics for epidemiologic practice.
Here we concentrated on the estimators themselves, rather
than estimates of variability, which are complicated in their
own right and are therefore the topic of future work.

In conclusion, we present these experimental results to
help epidemiologists and other health data scientists better
understand justifications for the use of estimators based on
modern semiparametric statistical theory.
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