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Abstract: A fundamental probabilistic equivalence between randomized experiments and observational
studies is presented. Given a detailed scenario, the reader is asked to consider which of two possible study
designs provides more information regarding the expected difference in an outcome due to a time-fixed
treatment. A general solution is described, and a particular worked example is also provided. A mathema-
tical proof is given in the appendix. The demonstrated equivalence helps to clarify common ground
between randomized experiments and observational studies, and to provide a foundation for considering
both the design and interpretation of studies.
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Below we describe a fundamental probabilistic equivalence between randomized experiments and observa-
tional studies. This equivalence clarifies the logical common ground between randomized experiments and
observational studies. This equivalence is one of equal bounds. Bounds are the minimum and maximum
values of the parameter (e. g., risk difference) that are consistent with the observed data distribution. Such
bounds were described by Robins (1989), Manski (1990), and Balke and Pearl (1994). Moreover, this equiva-
lence illustrates a fundamental limitation of observational studies, as compared to randomized experiments.

1 Two study designs

Say you are charged with the task of learning if and to what extent a binary, time-fixed treatment, denoted
as A with levels a={0,1}, affects a binary outcome of interest, measured at some fixed time-point after
treatment and denoted as Y with values y. Your goal is to produce an estimate of the expected difference in
the outcome Y due to the treatment (e. g., risk difference (Cole et al. 2015). With limited resources, you must
choose one of the two following study designs. You will want to choose the design that provides more
information regarding this expected difference in the outcome Y due to the treatment. By “information”
here we mean the width of the bounds for the risk difference.

The first study design is a randomized experiment (Fisher 1926). Specifically, you randomly assign
n participants with proportion p to treatment A=1 and proportion 1-p to treatment A=0. Say a
complication is that under this first study design exactly half of the outcome assessments will be missing,
balanced equally across treatment groups. To emphasize, in this thought experiment, for illustrative
purposes, half the outcome data are missing for the randomized experiment. The second study design is
an observational (cohort) study. You observe n participants where (the same) proportion p choose
treatment A=1 and proportion 1-p choose treatment A=0. Under this study design you observe all n
outcome assessments.

Assume n is so large, and that the participants are a random sample from the target population, such
that we can ignore the issues of random error and generalizability, respectively. Assume the outcome is
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measured without error in both studies. Assume that in the experiment there is complete compliance with
assigned treatment, and in the observational study treatment is measured without error. Assume that there
is no interference, i.e., one participant’s treatment does not affect the outcomes of another participant.
Assume there are not different versions of treatment, or treatment variation irrelevance (Cole and Frangakis
2009; Vander Weele 2009). Finally, assume that each study is the same in terms of cost and other
operational issues. Which study design would provide more information (i. e., tighter bounds)?

2 Fundamental equivalence

Without additional context, both study designs presented provide the exact same amount of information
(i. e., width of bounds) about the average difference in Y due to treatment! To see this point clearly, define
hypothetical values of Y under each treatment, which are called potential outcomes (Holland 1986; Neyman
etal. 1990; Robins 1986; Rubin 1974). The difference in Y due to treatment is the difference between the
value of Y if a participant had been assigned (or chosen) treatment A =1, denoted Y?, and the value of Y if a
participant had been assigned (or chosen) treatment A=0, denoted Y°. Define the expected difference in
the outcome Y in the target population due to the treatment by E(Y!-Y?). A fundamental problem of
causal inference is that we never observe both Y! and Y° for the same participant. If we did observe Y! and
YO for each participant, then the average of Y' - Y° would be an unbiased estimate of E(Y!-Y?).

For both studies, when we observe Y for a participant with A=a, then Y?*=Y by counterfactual
consistency (Pearl 2010), under our assumptions of no exposure measurement error and no versions of
treatments, or treatment-version irrelevance (Cole and Frangakis 2009; Vander Weele 2009). Imagine for a
moment that the first (experimental) study design was implemented with no missing data. Then counter-
factual consistency allows us to observe 1/2 of the potential outcomes, namely Y* for A =a. The average of
these observed outcomes for individuals assigned A=1 is an unbiased estimator of E(Y!|A=1), which
equals E(Y!) because treatment assignment is independent of the potential outcomes by randomization.
Similarly the average of the observed outcomes for individuals assigned A =0 is an unbiased estimator of
E(Y°|A=0), which by randomization equals E(Y°). Thus the difference in average outcomes between the
two arms of the study is an unbiased estimator of the treatment effect E(Y') - E(Y°)=E(Y!-Y°). This is a
central reason randomized designs are so highly regarded. Unfortunately, however, for the randomized
experiment under consideration, half of the outcomes assessments are missing. The mechanism by which
outcome assessments are missing is unknown.

In the second (observational) study design, counterfactual consistency again allows us to observe 1/2 of
the potential outcomes, namely Y? for A = a. But we do not observe the other half of the potential outcomes,
namely Y for A # a. Because the treatment was not randomized, the mechanism by which individuals chose
treatment is unknown.

Because potential outcomes are missing due to an unknown mechanism under either design we cannot
with certainty obtain an unbiased estimator of the expected difference in the outcome Y due to treatment,
E(Y!-Y"). However, with the observed data, we can calculate bounds on E(Y! - Y?) under each design.
These bounds are the same for each of the two study designs, proving the studies provide the same
information about the effect of treatment. A mathematical proof of the equivalence of the bounds is
provided in the Appendix.

3 An example

Table 1 provides a simple worked numerical example. In the upper panel of Table 1 the experimental study
is represented. There are n participants, with 0.5n assigned to A=1 and 0.5n assigned to A =0. Among the



Table 1: Illustrative example of a randomized experiment and observational study.

Randomized experiment:

Missing outcomes Observed nonevents Observed events Total
M=1 M=0,Y"=0 M=0,Y"=1
Treatment
A=1 0.25 0.225 0.025 0.5
A=0 0.25 0.200 0.050 0.5
Total 0.50 0.425 0.075 1.0

Observed risk difference is: 0.025/0.25 — 0.05/0.25 = 0.1 - 0.2 = - 0.1
Bounds are: —0.55, 0.45

Observational study:

Nonevents Y =0 Events Y =1 Total
Y’=0 Yi=0 Y°=1 yi=1
Treatment
A=1 ? 0.45 ? 0.05 0.5
A=0 0.40 ? 0.10 ? 0.5
Total 1.0

Observed risk difference is: 0.05/0.5 — 0.1/0.5 = 0.1-0.2 = -0.1
Bounds are: —0.55, 0.45.

0.5n with observed outcome status, there are 0.025n treated events (i.e., A=1, Y =1) and 0.05n untreated
events (i.e., A=0,Y=1), yielding a risk difference of — 0.1. Accounting for the 0.5n participants with
missing outcomes, the logically possible range (i. e., bounds) of the risk difference are — 0.55 and 0.45.
Specifically, the lower bound occurs if we assume all participants with missing outcomes assigned to A=1
are non-events (i.e., Y=0) and all participants with missing outcomes assigned to A=0 are events, or
0.025/0.5-0.3/0.5=0.05- 0.6 = — 0.55. The upper bound occurs if we assume all treated participants with
missing outcomes are events and untreated participants with missing outcomes are non-events, or
0.275/0.5-0.05/0.5=0.55—0.1=0.45.

In the lower panel of Table 1 the observational (cohort) study is represented. Again, there are
n participants, with 0.5n treated (4 =1) and 0.5n untreated (A = 0). Here every factual outcome Y is observed
but the counterfactual outcomes Y? for A # a are missing. Accounting for the n missing potential outcomes,
the bounds of the risk difference are again — 0.55 and 0.45. The lower bound occurs if we assume all
untreated participants would not have experienced an event if, contrary to fact, they had been treated, and
all treated participants would have experienced the event if, contrary to fact, they been untreated. In this
scenario, the 0.05n events observed among participants with A =1 are the only events that would have been
observed had all participants been treated (i.e., P(Y'=1)=0.05) and the 0.ln events observed among
participants with A=0 would be added to the 0.5n events we would have observed among participants
with A=1, had they been untreated (i. e., P(Y° =1) =0.6), for a risk difference of 0.05-0.6 = - 0.55.

The upper bound occurs if we assume all untreated participants would have experienced an event if,
contrary to fact, they had been treated, and all treated participants would have not experienced the event if,
contrary to fact, they had been untreated. Under this scenario, we assume that all 0.5n untreated partici-
pants would have had the event if (contrary to fact) they had been treated in addition to the 0.05n events we
observed among participants with A =1 participants, so P(Y!=1)=0.55. Similarly, we observed 0.1n events
among participants with A=0 and assume no treated participants would have had events if (contrary
to fact) they had been untreated, so P(Y°=1)=0.1, making the upper bound of the risk difference
0.55-0.1=0.45.



4 Discussion

With a pair of treatments and assuming no additional context beyond what is provided above, the bounds
for the risk difference from an observational study are equivalent to the analogous bounds for a randomized
experiment with 50 % missing outcomes. Of course the described experiment may be labeled as “broken”
because of the missing outcomes (Frangakis and Rubin 1999; Little etal. 2012). However, experience
suggests that all real-world experiments are broken to varying degrees. In real-world settings each succes-
sive additional piece of context will unbalance the equivalence given in this example, giving preference to
one design over the other. A central point of this paper is that we cannot conclude one design is better than
the other without additional context. Such additional context, could be used to “unbalance” the equiva-
lence and allow for an informed design choice. Yet identifying this balancing point, or equivalence,
between a randomized experiment with missing outcome assessments and an observational study is useful.
When a randomized experiment is feasible, this equivalence indicates that an experiment will be preferable
to an observational study provided less than 50 % of outcome assessments in the experiment are missing.
However, experiments are sometimes unethical and are often prohibitively expensive. When a randomized
experiment is infeasible, nonexperimental observational studies can help to refine our knowledge, or
sharpen our (probabilistic) bounds about the effect of a treatment. Moreover, balancing points, such as
described here, provide a natural foundation when considering both the design and interpretation of
experimental and nonexperimental studies.
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Appendix: Proof

For each design we will calculate the two bounds for E(Y?). The same approach can be used for E(Y?). We
may then subtract the lower bound for E(Y°) from the upper bound for E(Y?!) to calculate the upper bound
for the risk difference, E(Y! - Y°). The lower bound for E(Y! - Y°) can be computed analogously.

First consider the randomized experiment where

E(Y°)=E(Y°|A=0)=E(Y|A=0).

In the above, the first equality holds by randomization of treatment A and the second equality holds by
counterfactual consistency. The far right term is identified from the observed data when there are no
missing outcome assessments. However, for the experiment described in the main text half of the outcome
assessments were missing. Let M =1 indicate the outcome assessment is missing, M =0 otherwise. We may
expand E(Y|A=0) as

E(Y|[A=0,M=0)P(M=0|A=0)+E(Y|A=0,M=1)P(M=1]A=0).
For the experiment described in the main text, missingness does not depend on treatment group, implying
P(M=m|A=0)=P(M=m)for m=0,1. Therefore we can simplify the above as
E(Y|[A=0,M=0)P(M=0)+E(Y|[A=0,M=1)P(M=1).

The first, second and fourth terms are identified in the observed data, but the third term is not. Therefore,
setting the unidentified third term E(Y|A=0,M=1) to equal the minimum possible value of 0, yields the
lower bound on E(Y|A=0), namely E(Y|A=0,M=0)P(M=0). Alternatively, setting the unidentified third
term E(Y|A=0,M=1) equal to the maximum possible value of 1, yields the upper bound on E(Y|A=0),
namely E(Y|A=0,M=0)P(M=0)+P(M=1). The difference between the lower and upper bounds is



P(M=1). Likewise, the difference between the lower and upper bounds for E(Y!) is P(M =0). Therefore,
whatever the value of P(M =1) the length of the bounds on the risk difference is 1 because, by convexity,
P(M=1)+P(M=0)=1.

Likewise, in the observational study we can expand E(Y°) as

E(Y°|A=0)P(A=0)+E(Y°|A=1)P(A=1).
By counterfactual consistency we have
E(Y|A=0)P(A=0)+E(Y°|A=1)P(A=1).

Again, the first, second and fourth terms are identified in the observed data, but the third term is not.
Therefore, setting the unidentified third term E(Y°|A=1) equal to the minimum possible value of 0, yields
the lower bound on E(Y°), namely E(Y|A=0)P(A=0). Alternatively, setting the unidentified third term
E(Y°|A=0) equal to the maximum possible value of 1, yields the upper bound on E(Y°), namely
E(Y|A=0)P(A=0)+P(A=1). The difference between the lower and upper bounds is P(A=1). Likewise,
the difference between the lower and upper bounds for E(Y') is P(A=0). Therefore, whatever the value of
P(A=1) the length of the bounds on the risk difference is 1 because, by convexity, P(A=1)+P(A=0)=1.
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