32 research outputs found

    Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number

    Get PDF
    Soybean seed oil typically contains 18–20% oleic acid. Increasing the content of oleic acid is beneficial for health and biodiesel production. Mutations in FAD2-1 genes have been reported to increase seed oleic acid content. A subset of 1,037 mutant families from a mutagenized soybean cultivar (cv.) Forrest population was screened using reverse genetics (TILLING) to identify mutations within FAD2 genes. Although no fad2 mutants were identified using gel-based TILLING, four fad2-1A and one fad2-1B mutants were identified to have high seed oleic acid content using forward genetic screening and subsequent target sequencing. TILLING has been successfully used as a non-transgenic reverse genetic approach to identify mutations in genes controlling important agronomic traits. However, this technique presents limitations in traits such as oil composition due to gene copy number and similarities within the soybean genome. In soybean, FAD2 are present as two copies, FAD2-1 and FAD2-2. Two FAD2-1 members: FAD2-1A and FAD2-1B; and three FAD2-2 members: FAD2-2A, FAD2-2B, and FAD2-2C have been reported. Syntenic, phylogenetic, and in silico analysis revealed two additional members constituting the FAD2 gene family: GmFAD2-2D and GmFAD2-2E, located on chromosomes 09 and 15, respectively. They are presumed to have diverged from other FAD2-2 members localized on chromosomes 19 (GmFAD2-2A and GmFAD2-2B) and 03 (GmFAD2-2C). This work discusses alternative solutions to the limitations of gel-based TILLING in functional genomics due to high copy number and multiple paralogs of the FAD2 gene family in soybean

    Genome of wild olive and the evolution of oil biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, andACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive comparedwith sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    Get PDF
    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. This study aims to characterize a subfamily of TPR containing proteins named Soluble NSF-Attachment Protein (GmSNAP), of which GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). This study uses a population of recombinant inbred lines from resistant and susceptible parents to analyse SNAP gene family divergence over time. Five members constitute the soybean SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Phylogenetic analysis of genes from 22 diverse plant species showed that SNAP genes were distributed in six monophyletic clades corresponding to the different plant lineages. SNAP genes were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. This hypothesis is supported by the conservation of the four TPR motifs in all species, including ancestral lineages. Syntenic analysis of regions harbouring GmSNAP genes reveals that this family arose from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAP genes indicates a co-regulation following SCN infection. Genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 was identified as a novel minor gene conferring resistance to SCN

    The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode

    Get PDF
    Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species

    Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn.

    Get PDF
    Sweet corn is one of the most important vegetables in the United States and Canada. Here, we present a de novo assembly of a sweet corn inbred line Ia453 with the mutated shrunken2-reference allele (Ia453-sh2). This mutation accumulates more sugar and is present in most commercial hybrids developed for the processing and fresh markets. The ten pseudochromosomes cover 92% of the total assembly and 99% of the estimated genome size, with a scaffold N50 of 222.2 Mb. This reference genome completely assembles the large structural variation that created the mutant sh2-R allele. Furthermore, comparative genomics analysis with six field corn genomes highlights differences in single-nucleotide polymorphisms, structural variations, and transposon composition. Phylogenetic analysis of 5,381 diverse maize and teosinte accessions reveals genetic relationships between sweet corn and other types of maize. Our results show evidence for a common origin in northern Mexico for modern sweet corn in the U.S. Finally, population genomic analysis identifies regions of the genome under selection and candidate genes associated with sweet corn traits, such as early flowering, endosperm composition, plant and tassel architecture, and kernel row number. Our study provides a high-quality reference-genome sequence to facilitate comparative genomics, functional studies, and genomic-assisted breeding for sweet corn

    Genome of Wild Olive and the Evolution of Oil Biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at similar to 28 and similar to 59 Mya. These events contributed to the expansion and neo-functionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2,3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    ON THE PATHOGENESIS OF SOYBEAN CYST NEMATODE AND MECHANISMS OF RESISTANCE BY SOYBEAN

    No full text
    Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most devastating pathogen of soybeans, Glycine max (L.) Merr., causing over $1 billion in yield losses annually in the United States alone. Currently, planting of genetically resistant cultivars is the most commonly employed management strategy. Due to an overuse of genetic resistance derived from the soybean variety ‘PI 88788’, many populations of soybean cyst nematodes are becoming virulent on previously resistant cultivars, urging the understanding and discovery of alternative mechanisms of SCN resistance. In this study, we will delve into the history and epidemiology of Heterodera glycines, learn about the molecular etiology underlying SCN pathogenesis, begin to understand the mechanism of resistance by Peking-type soybeans, and look to discover a novel mechanism of resistance by establishment of a mutagenized population of the soybean variety ‘PI 567516C’

    Wheelchair use, pain and satisfaction with life in a national sample of older adults

    No full text
    w w w. g e r o n t e c h j o u r n a l . n e t M a r c h 2 0 0 5 , Vo l 3 , N o 3 As the number of older adults in our population increases, the use of assistive technology becomes more vital as it has been shown to improve social autonomy, reduce and resolve functional limitations when compared with personal assistance, and reduce some Medicare expenditure
    corecore