27 research outputs found
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
There is a trend towards using wireless technologies in networked control
systems. However, the adverse properties of the radio channels make it
difficult to design and implement control systems in wireless environments. To
attack the uncertainty in available communication resources in wireless control
systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS)
scheme is developed, which takes advantage of the co-design of control and
wireless communications. By exploiting cross-layer design, CLAFS adjusts the
sampling periods of control systems at the application layer based on
information about deadline miss ratio and transmission rate from the physical
layer. Within the framework of feedback scheduling, the control performance is
maximized through controlling the deadline miss ratio. Key design parameters of
the feedback scheduler are adapted to dynamic changes in the channel condition.
An event-driven invocation mechanism for the feedback scheduler is also
developed. Simulation results show that the proposed approach is efficient in
dealing with channel capacity variations and noise interference, thus providing
an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at
http://www.mdpi.org/sensors/papers/s8074265.pd
Wireless networked control systems with QoS-based sampling
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is propose
An approach to wireless networked control
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
An approach to wireless networked control
EThOS - Electronic Theses Online ServiceGBUnited Kingdo