52 research outputs found

    TOI-4336 A b:A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system

    Get PDF
    Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M-dwarf. We validate the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1±0.1R⊕. Its host star is an M3.5-dwarf star of mass 0.33±0.01M⊙ and radius 0.33±0.02R⊙ member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the Habitable Zone of its host star, the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST

    TOI-2084 b and TOI-4184 b: two new sub-Neptunes around M dwarf stars

    Full text link
    We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, SED (Spectral Energy Distribution) analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084b and TOI-4184b are sub-Neptune-sized planets with radii of Rp = 2.47 +/- 0.13R_Earth and Rp = 2.43 +/- 0.21R_Earth, respectively. TOI-2084b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of T_eq = 527 +/- 8K and an irradiation of S_p = 12.8 +/- 0.8 S_Earth. Its host star is a dwarf of spectral M2.0 +/- 0.5 at a distance of 114pc with an effective temperature of T_eff = 3550 +/- 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184b orbits around an M5.0 +/- 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of T_eq = 412 +/- 8 K and an irradiation of S_p = 4.8 +/- 0.4 S_Earth. TOI-4184 is a metal poor star ([Fe/H] = -0.27 +/- 0.09 dex) at a distance of 69 pc with an effective temperature of T_eff = 3225 +/- 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.Comment: Accepted for publication in A&

    TOI-2084 b and TOI-4184 b:two new sub-Neptunes around M dwarf stars

    Get PDF
    Funding: The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. This research is in part funded by the European Union’s Horizon 2020 research and innovation program (grants agreements n◦ 803193/BEBOP), and from the Science and Technology Facilities Council (STFC; grant n◦ ST/S00193X/1). U.G.J. gratefully acknowledges support from tthe European Union H2020-MSCA-ITN-2019 under grant No. 860470 (CHAMELEON). We acknowledge funding from the European Research Council under the ERC Grant Agreement n. 337591-ExTrA.We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra from Shane/Kast and Magellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii of Rp = 2.47 ± 0.13R⊕ and Rp = 2.43 ± 0.21 R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature of Teq = 527 ± 8 K and an irradiation of Sp = 12.8 ± 0.8 S⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature of Teff = 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag = 11.87) each 4.9 days, and has an equilibrium temperature of Teq = 412 ± 8 K and an irradiation of Sp = 4.8 ± 0.4 S⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature of Teff = 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.Publisher PDFPeer reviewe

    TOI-5678 b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS

    Get PDF
    A large sample of long-period giant planets has been discovered thanks to long-term radial velocity surveys, but only a few dozen of these planets have a precise radius measurement. Transiting gas giants are crucial targets for the study of atmospheric composition across a wide range of equilibrium temperatures and for shedding light on the formation and evolution of planetary systems. Indeed, compared to hot Jupiters, the atmospheric properties and orbital parameters of cooler gas giants are unaltered by intense stellar irradiation and tidal effects. We identify long-period planets in the Transiting Exoplanet Survey Satellite (TESS) data as duo-transit events. To solve the orbital periods of TESS duo-transit candidates, we use the CHaracterising ExOPlanet Satellite (CHEOPS) to observe the highest-probability period aliases in order to discard or confirm a transit event at a given period. We also collect spectroscopic observations with CORALIE and HARPS in order to confirm the planetary nature and measure the mass of the candidates. We report the discovery of a warm transiting Neptune-mass planet orbiting TOI-5678. After four non-detections corresponding to possible periods, CHEOPS detected a transit event matching a unique period alias. Joint modeling reveals that TOI-5678 hosts a 47.73 day period planet. TOI-5678 b has a mass of 20 (+-4) Me and a radius of 4.91 (+-0.08 Re) . Using interior structure modeling, we find that TOI-5678 b is composed of a low-mass core surrounded by a large H/He layer with a mass of 3.2 (+1.7, -1.3) Me. TOI-5678 b is part of a growing sample of well-characterized transiting gas giants receiving moderate amounts of stellar insolation (11 Se). Precise density measurement gives us insight into their interior composition, and the objects orbiting bright stars are suitable targets to study the atmospheric composition of cooler gas giants.Comment: 17 pages, 10 figures, accepted to A&

    TOI-269 b: An eccentric sub-Neptune transiting a M2 dwarf revisited with ExTrA

    Get PDF
    We present the confirmation of a new sub-Neptune close to the transition between super-Earths and sub-Neptunes transiting the M2 dwarf TOI-269 (TIC 220 479 565, V = 14.4 mag, J = 10.9 mag, Ro = 0.40 Ro, Mo = 0.39 Mo, d = 57 pc). The exoplanet candidate has been identified in multiple TESS sectors, and validated with high-precision spectroscopy from HARPS and ground-based photometric follow-up from ExTrA and LCO-CTIO. We determined mass, radius, and bulk density of the exoplanet by jointly modeling both photometry and radial velocities with juliet. The transiting exoplanet has an orbital period of P = 3.6977104 ± 0.0000037 days, a radius of 2.77 ± 0.12 R·, and a mass of 8.8 ± 1.4 M·. Since TOI-269 b lies among the best targets of its category for atmospheric characterization, it would be interesting to probe the atmosphere of this exoplanet with transmission spectroscopy in order to compare it to other sub-Neptunes. With an eccentricity e = 0.425-0.086+0.082, TOI-269 b has one of the highest eccentricities of the exoplanets with periods less than 10 days. The star being likely a few Gyr old, this system does not appear to be dynamically young. We surmise TOI-269 b may have acquired its high eccentricity as it migrated inward through planet-planet interactions

    Two temperate super-Earths transiting a nearby late-type M dwarf

    Full text link
    peer reviewedIn the age of JWST, temperate terrestrial exoplanets transiting nearby late-type M dwarfs provide unique opportunities for characterising their atmospheres, as well as searching for biosignature gases. We report here the discovery and validation of two temperate super-Earths transiting LP 890-9 (TOI-4306, SPECULOOS-2), a relatively low-activity nearby (32 pc) M6V star. The inner planet, LP 890-9b, was first detected by TESS (and identified as TOI-4306.01) based on four sectors of data. Intensive photometric monitoring of the system with the SPECULOOS Southern Observatory then led to the discovery of a second outer transiting planet, LP 890-9c (also identified as SPECULOOS-2c), previously undetected by TESS. The orbital period of this second planet was later confirmed by MuSCAT3 follow-up observations. With a mass of 0.118±0.002 M⊙, a radius of 0.1556±0.0086 R⊙, and an effective temperature of 2850±75 K, LP 890-9 is the second-coolest star found to host planets, after TRAPPIST-1. The inner planet has an orbital period of 2.73 d, a radius of 1.320+0.053−0.027 R⊕, and receives an incident stellar flux of 4.09±0.12 S⊕. The outer planet has a similar size of 1.367+0.055−0.039 R⊕ and an orbital period of 8.46 d. With an incident stellar flux of 0.906 ± 0.026 S⊕, it is located within the conservative habitable zone, very close to its inner limit. Although the masses of the two planets remain to be measured, we estimated their potential for atmospheric characterisation via transmission spectroscopy using a mass-radius relationship and found that, after the TRAPPIST-1 planets, LP 890-9c is the second-most favourable habitable-zone terrestrial planet known so far. The discovery of this remarkable system offers another rare opportunity to study temperate terrestrial planets around our smallest and coolest neighbours

    Bihan. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography

    No full text
    The human infant is particularly immature at birth and brain maturation, with the myelination of white matter fibers, is protracted until adulthood. Diffusion tensor imaging offers the possibility to describe non invasively the fascicles spatial organization at an early stage and to follow the cerebral maturation with quantitative parameters that might be correlated with behavioral development. Here, we assessed the feasibility to study the organization and maturation of major white matter bundles in eighteen 1-to 4-monthold healthy infants, using a specific acquisition protocol customized to the immature brain (with 15 orientations of the diffusion gradients and a 700 s mm À2 b factor). We were able to track most of the main fascicles described at later ages despite the low anisotropy of the infant white matter, using the FACT algorithm. This mapping allows us to propose a new method of quantification based on reconstructed tracts, split between specific regions, which should be more sensitive to specific changes in a bundle than the conventional approach, based on regionsof-interest. We observed variations in fractional anisotropy and mean diffusivity over the considered developmental period in most bundles (corpus callosum, cerebellar peduncles, cortico-spinal tract, spinothalamic tract, capsules, radiations, longitudinal and uncinate fascicles, cingulum). The results are in good agreement with the known stages of white matter maturation and myelination, and the proposed approach might provide important insights on brain development.
    corecore