822 research outputs found

    Is the Thomas precession a source of SR power?

    Get PDF
    The structural composition and the properties of the first quantum spin-orientation-dependent correction to synchrotron radiation power are discussed. On the basis of spin mass renormalization it is shown that, in the conventional sence, the Thomas precession is not a source of relativistic radiation. This conclusion is in agreement with well-known statements on the spin dependence of mass and purely kinematic origin of Thomas precession.Comment: 7 pages, LATEX, to be published in Nucl. Instr. and Meth. A (2001

    Elliptic curve configurations on Fano surfaces

    Get PDF
    The elliptic curves on a surface of general type constitute an obstruction for the cotangent sheaf to be ample. In this paper, we give the classification of the configurations of the elliptic curves on the Fano surface of a smooth cubic threefold. That means that we give the number of such curves, their intersections and a plane model. This classification is linked to the classification of the automorphism groups of theses surfaces.Comment: 17 pages, accepted and shortened version, the rest will appear in "Fano surfaces with 12 or 30 elliptic curves

    Strong Universality in Forced and Decaying Turbulence

    Full text link
    The weak version of universality in turbulence refers to the independence of the scaling exponents of the nnth order strcuture functions from the statistics of the forcing. The strong version includes universality of the coefficients of the structure functions in the isotropic sector, once normalized by the mean energy flux. We demonstrate that shell models of turbulence exhibit strong universality for both forced and decaying turbulence. The exponents {\em and} the normalized coefficients are time independent in decaying turbulence, forcing independent in forced turbulence, and equal for decaying and forced turbulence. We conjecture that this is also the case for Navier-Stokes turbulence.Comment: RevTex 4, 10 pages, 5 Figures (included), 1 Table; PRE, submitte

    Spin alignments of vector mesons in deeply inelastic lepton-nucleon scattering

    Full text link
    We extend the calculations of the spin alignments of vector mesons in e+ee^+e^- annihilation in a recent Rapid Communication to deeply inelastic lepton-nucleon scatterings. We present the results for different mesons in the current fragmentation regions of μN\mu^- N \toμVX \mu^- VX at high energies and νμN\nu_\mu N \toμVX \mu^- VX at both high and low energies. We also present the predictions for νμN\nu_\mu N \toμVX \mu^- VX at NOMAD energies in the target fragmentation region using a valence quark model.Comment: 4 pages, 6 figures; to appear in Phys. Rev.

    Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient

    Full text link
    On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave including correspondence to the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final publication is available at http://www.springerlink.co

    Did Galaxy Assembly and Supermassive Black-Hole Growth go hand-in-hand?

    Full text link
    In this paper, we address whether the growth of supermassive black-holes has kept pace with the process of galaxy assembly. For this purpose, we first searched the Hubble Ultra Deep Field (HUDF) for "tadpole galaxies", which have a knot at one end and an extended tail. They appear dynamically unrelaxed -- presumably early-stage mergers -- and make up ~6% of the field galaxy population. Their redshift distribution follows that of field galaxies, indicating that -- if tadpole galaxies are indeed dynamically young -- the process of galaxy assembly generally kept up with the reservoir of field galaxies as a function of epoch. Next, we present a search for HUDF objects with point-source components that are optically variable (at the >~3.0 sigma level) on timescales of weeks--months. Among 4644 objects to i_AB=28.0 mag (10 sigma), 45 have variable point-like components, which are likely weak AGN. About 1% of all field objects show variability for 0.1 < z < 4.5, and their redshift distribution is similar to that of field galaxies. Hence supermassive black-hole growth in weak AGN likely also kept up with the process of galaxy assembly. However, the faint AGN sample has almost no overlap with the tadpole sample, which was predicted by recent hydrodynamical numerical simulations. This suggests that tadpole galaxies are early-stage mergers, which likely preceded the ``turn-on'' of the AGN component and the onset of visible point-source variability by >~1 Gyr.Comment: 9 pages, Latex2e requires 'elsart' and 'elsart3' (included), 10 postscript figures. To appear in the Proceedings of the Leiden Workshop on "QSO Host Galaxies: Evolution and Environment", eds. P.D. Barthel & D.B. Sanders (New Astron. Rev., 2006

    Toy Model for Pion Production II: The role of three-particle singularities

    Get PDF
    The influence of three-particle breakup singularities on s-wave meson production in nucleon-nucleon collisions is studied within the distorted wave Born approximation. This study is based on a simple scalar model for the two-nucleon interaction and the production mechanism. An algorithm for the exact numerical treatment of the inherent three-body cuts, together with its straightforward implementation is presented. It is also shown that two often-used approximations to avoid the calculation of the three-body breakup are not justified. The possible impact on pion production observables is discussed.Comment: 14 pages, 6 figure

    Toy Model for Pion Production in Nucleon-Nucleon Collisions

    Get PDF
    We develop a toy model of pion production in nucleon-nucleon collisions that reproduces some of the features of the chiral Lagrangian calculations. We calculate the production amplitude and examine some common approximations.Comment: 9 pages, 3 figure

    The dependence of the EIT wave velocity on the magnetic field strength

    Full text link
    "EIT waves" are a wavelike phenomenon propagating in the corona, which were initially observed in the extreme ultraviolet (EUV) wavelength by the EUV Imaging Telescope (EIT). Their nature is still elusive, with the debate between fast-mode wave model and non-wave model. In order to distinguish between these models, we investigate the relation between the EIT wave velocity and the local magnetic field in the corona. It is found that the two parameters show significant negative correlation in most of the EIT wave fronts, {\it i.e.}, EIT wave propagates more slowly in the regions of stronger magnetic field. Such a result poses a big challenge to the fast-mode wave model, which would predict a strong positive correlation between the two parameters. However, it is demonstrated that such a result can be explained by the fieldline stretching model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings, which are generated by successive stretching of closed magnetic field lines pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy
    corecore