78 research outputs found

    Something in the atmosphere? Michael Chekhov, Deirdre Hurst Du Prey, and a web of practices between acting and dance

    Get PDF
    This article contextualises principles of Chekhov’s technique within convergent developments in dance by bringing into focus the interesting web of connections between Chekhov’s female colleagues — specifically his associate Deirdre Hurst Du Prey — and key pioneers in the field of dance and dance-mime, including Mary Wigman, Isadora Duncan, Martha Graham and Margaret Barr. Their cross-connections broaden our view on the canon of embodied theatre practice, and also open up reflection on how overlaps between acting- and dance principles may be useful for contemporary embodied theatre practice and its efforts to work across these currently (in the Western conservatoire context) quite segregated disciplines

    Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our group has previously identified a quantitative trait locus (QTL) affecting fat and protein percentages on bovine chromosome 6, and refined the QTL position to a 420-kb interval containing six genes. Studies performed in other cattle populations have proposed polymorphisms in two different genes (<it>ABCG2 </it>and <it>OPN</it>) as the underlying functional QTL nucleotide. Due to these conflicting results, we have included these QTNs, together with a large collection of new SNPs produced from PCR sequencing, in a dense marker map spanning the QTL region, and reanalyzed the data using a combined linkage and linkage disequilibrium approach.</p> <p>Results</p> <p>Our results clearly exclude the <it>OPN </it>SNP (<it>OPN_3907</it>) as causal site for the QTL. Among 91 SNPs included in the study, the <it>ABCG2 </it>SNP (<it>ABCG2_49</it>) is clearly the best QTN candidate. The analyses revealed the presence of only one QTL for the percentage traits in the tested region. This QTL was completely removed by correcting the analysis for <it>ABCG2_49</it>. Concordance between the sires' marker genotypes and segregation status for the QTL was found for <it>ABCG2_49 </it>only. The C allele of <it>ABCG2_49 </it>is found in a marker haplotype that has an extremely negative effect on fat and protein percentages and positive effect on milk yield. Of the 91 SNPs, <it>ABCG2_49 </it>was the only marker in perfect linkage disequilibrium with the QTL.</p> <p>Conclusion</p> <p>Based on our results, OPN_3907 can be excluded as the polymorphism underlying the QTL. The results of this and other papers strongly suggest the [A/C] mutation in <it>ABCG2_49 </it>as the causal mutation, although the possibility that <it>ABCG2_49 </it>is only a marker in perfect LD with the true mutation can not be completely ruled out.</p

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates

    Whole-genome resequencing of two elite sires for the detection of haplotypes under selection in dairy cattle

    Get PDF
    Using a combination of whole-genome resequencing and high-density genotyping arrays, genome-wide haplotypes were reconstructed for two of the most important bulls in the history of the dairy cattle industry, Pawnee Farm Arlinda Chief (“Chief”) and his son Walkway Chief Mark (“Mark”), each accounting for ∌7% of all current genomes. We aligned 20.5 Gbp (∌7.3× coverage) and 37.9 Gbp (∌13.5× coverage) of the Chief and Mark genomic sequences, respectively. More than 1.3 million high-quality SNPs were detected in Chief and Mark sequences. The genome-wide haplotypes inherited by Mark from Chief were reconstructed using ∌1 million informative SNPs. Comparison of a set of 15,826 SNPs that overlapped in the sequence-based and BovineSNP50 SNPs showed the accuracy of the sequence-based haplotype reconstruction to be as high as 97%. By using the BovineSNP50 genotypes, the frequencies of Chief alleles on his two haplotypes then were determined in 1,149 of his descendants, and the distribution was compared with the frequencies that would be expected assuming no selection. We identified 49 chromosomal segments in which Chief alleles showed strong evidence of selection. Candidate polymorphisms for traits that have been under selection in the dairy cattle population then were identified by referencing Chief’s DNA sequence within these selected chromosome blocks. Eleven candidate genes were identified with functions related to milk-production, fertility, and disease-resistance traits. These data demonstrate that haplotype reconstruction of an ancestral proband by whole-genome resequencing in combination with high-density SNP genotyping of descendants can be used for rapid, genome-wide identification of the ancestor’s alleles that have been subjected to artificial selection

    Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

    Get PDF
    peer-reviewedH.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr ‘Synbreed—Synergistic Plant and Animal Breeding’ (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft SĂŒddeutscher RinderzĂŒchter, the Arbeitsgemeinschaft Österreichischer FleckviehzĂŒchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the ConfederaciĂłn de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled ‘Whole Genome Selection through Genome Wide Imputation in Beef Cattle’ and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership ‘Breed4Food’ (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls.Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals

    DNA Barcoding of Israeli Indigenous and Introduced Cichlids

    Get PDF
    The objectives of this study were barcoding and taxonomic analysis of the five tilapiine species (Oreochromis aureus, O. niloticus, O. mossam- bicus, Sarotherodon galilaeus, and Tilapia zillii), two tilapia hybrid strains (Florida red tilapia and Philippine red tilapia), and two endemic wild cichlids (Tristramella simonis and Astatotilapia flaviijosephi) available in Israel, as well as O. urolepis hornorum. Cytochrome oxidase subunit I (COI) 619 bp sequence traces of 104 individuals were assembled, aligned, and compared (GenBank project GI 209553463). The DNA sequences of two hybrid strains were identical to those of O. hornorum and O. aureus. Absence of intra-specific variability was detected in the commercially used species, O. aureus, S. galilaeus, O. mossambicus, and O. urolepis horno- rum. Two DNA sequence variants were detected in O. niloticus originating from Ghana and Egypt. In contrast, 2-3 variants were detected in the DNA of each of the non-commercial species. Amino-acid sequences were identical in all “true tilapias” and different from the sequences in the endemic cichlids. As a whole, the protein phylogenetic tree fitted the expected conventional taxonomy as opposed to the respective DNA-based tree. Sequences FJ348047-FJ348150 were submitted to GenBank via the BOLD database (identical to FISH001-08 - FISH104-08 in this database)
    • 

    corecore