1,032 research outputs found

    Entropy Bounds and Dark Energy

    Get PDF
    Entropy bounds render quantum corrections to the cosmological constant Λ\Lambda finite. Under certain assumptions, the natural value of Λ\Lambda is of order the observed dark energy density 1010eV4\sim 10^{-10} {\rm eV}^4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is wp/ρ=0w \equiv p / \rho = 0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ\Lambda in these scenarios might account for the diffuse dark matter component of the cosmological energy density.Comment: 6 pages, Latex. Added discussion of non-cosmological limits on holographic dark energy. Version to appear in Physics Letters

    Composite Higgs from Higher Representations

    Full text link
    We investigate new models of dynamical electroweak symmetry breaking resulting from the condensation of fermions in higher representations of the technicolor group. These models lie close to the conformal window, and are free from the flavor-changing neutral current problem despite small numbers of flavors and colors. Their contribution to the S parameter is small and not excluded by precision data. The Higgs itself can be light and narrow.Comment: 4-pages, 2-columns, RevTex. Final version to appear on Physics Letters

    Scaling Properties of 1D Anderson Model with Correlated Diagonal Disorder

    Full text link
    Statistical and scaling properties of the Lyapunov exponent for a tight-binding model with the diagonal disorder described by a dichotomic process are considered near the band edge. The effect of correlations on scaling properties is discussed. It is shown that correlations lead to an additional parameter governing the validity of single parameter scaling.Comment: 5 pages, 3 figures, RevTe

    Λc+\Lambda^+_c- and Λb\Lambda_b-hypernuclei

    Full text link
    Λc+\Lambda^+_c- and Λb\Lambda_b-hypernuclei are studied in the quark-meson coupling (QMC) model. Comparisons are made with the results for Λ\Lambda-hypernuclei studied in the same model previously. Although the scalar and vector potentials felt by the Λ\Lambda, Λc+\Lambda_c^+ and Λb\Lambda_b in the corresponding hypernuclei multiplet which has the same baryon numbers are quite similar, the wave functions obtained, e.g., for 1s1/21s_{1/2} state, are very different. The Λc+\Lambda^+_c baryon density distribution in Λc+209^{209}_{\Lambda^+_c}Pb is much more pushed away from the center than that for the Λ\Lambda in Λ209^{209}_\LambdaPb due to the Coulomb force. On the contrary, the Λb\Lambda_b baryon density distributions in Λb\Lambda_b-hypernuclei are much larger near the origin than those for the Λ\Lambda in the corresponding Λ\Lambda-hypernuclei due to its heavy mass. It is also found that level spacing for the Λb\Lambda_b single-particle energies is much smaller than that for the Λ\Lambda and Λc+\Lambda^+_c.Comment: Latex, 14 pages, 4 figures, text was extended, version to appear in Phys. Rev.

    Integrating fluctuations into distribution of resources in transportation networks

    Full text link
    We propose a resource distribution strategy to reduce the average travel time in a transportation network given a fixed generation rate. Suppose that there are essential resources to avoid congestion in the network as well as some extra resources. The strategy distributes the essential resources by the average loads on the vertices and integrates the fluctuations of the instantaneous loads into the distribution of the extra resources. The fluctuations are calculated with the assumption of unlimited resources, where the calculation is incorporated into the calculation of the average loads without adding to the time complexity. Simulation results show that the fluctuation-integrated strategy provides shorter average travel time than a previous distribution strategy while keeping similar robustness. The strategy is especially beneficial when the extra resources are scarce and the network is heterogeneous and lowly loaded.Comment: 14 pages, 4 figure

    Mossbauer neutrinos in quantum mechanics and quantum field theory

    Full text link
    We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate Γ\Gamma of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ\Gamma is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Mossbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.Comment: LaTeX, 16 pages, 1 figure; v2: typos corrected; matches published versio

    Equilibrium and nonequilibrium fluctuations at the interface between two fluid phases

    Full text link
    We have performed small-angle light-scattering measurements of the static structure factor of a critical binary mixture undergoing diffusive partial remixing. An uncommon scattering geometry integrates the structure factor over the sample thickness, allowing different regions of the concentration profile to be probed simultaneously. Our experiment shows the existence of interface capillary waves throughout the macroscopic evolution to an equilibrium interface, and allows to derive the time evolution of surface tension. Interfacial properties are shown to attain their equilibrium values quickly compared to the system's macroscopic equilibration time.Comment: 10 pages, 5 figures, submitted to PR

    Curvatons in Supersymmetric Models

    Full text link
    We study the curvaton scenario in supersymmetric framework paying particular attention to the fact that scalar fields are inevitably complex in supersymmetric theories. If there are more than one scalar fields associated with the curvaton mechanism, isocurvature (entropy) fluctuations between those fields in general arise, which may significantly affect the properties of the cosmic density fluctuations. We examine several candidates for the curvaton in the supersymmetric framework, such as moduli fields, Affleck-Dine field, FF- and DD-flat directions, and right-handed sneutrino. We estimate how the isocurvature fluctuations generated in each case affect the cosmic microwave background angular power spectrum. With the use of the recent observational result of the WMAP, stringent constraints on the models are derived and, in particular, it is seen that large fraction of the parameter space is excluded if the Affleck-Dine field plays the role of the curvaton field. Natural and well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure

    NLTE wind models of hot subdwarf stars

    Full text link
    We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.Comment: 7 pages, to appear in Astrophysics and Space Science. The final publication will be available at springerlink.com

    Medium dependence of the bag constant in the quark-meson coupling model

    Full text link
    Possible variations of the quark-meson coupling (QMC) model are examined in which the bag constant decreases in the nuclear medium. The reduction is supposed to depend on either the mean scalar field or the effective mass of the nucleon. It is shown that the electric and magnetic radii of the bound nucleon are almost linearly correlated with the bag constant. Using the fact that the size of the bound nucleon inside a nucleus is strongly constrained by yy-scaling data in quasielastic, electron-nucleus scattering, we set a limit for the reduction allowed in the bag constant for these two models. The present study implies that the bag constant can decrease up to 10--17 % at average nuclear density, depending on the details of the model.Comment: 31 pages including 4 ps figures, to appear in Nucl.Phys.
    corecore