4,428 research outputs found
The Level-0 Muon Trigger for the LHCb Experiment
A very compact architecture has been developed for the first level Muon
Trigger of the LHCb experiment that processes 40 millions of proton-proton
collisions per second. For each collision, it receives 3.2 kBytes of data and
it finds straight tracks within a 1.2 microseconds latency. The trigger
implementation is massively parallel, pipelined and fully synchronous with the
LHC clock. It relies on 248 high density Field Programable Gate arrays and on
the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM
All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region
All-solid-state electrochromic reflectance devices for thermal emittance modulation were designed for operation in the spectral region from mid- to far-infrared wavelengths (2–40 μm). All device constituent layers were grown by magnetron sputtering. The electrochromic (polycrystalline WO3), ion conductor (Ta2O5), and Li+ ion-storage layer (amorphous WO3), optimized for their infrared (IR) optical thicknesses, are sandwiched between a highly IR reflecting Al mirror, and a 90% IR transmissive Al grid top electrode, thereby meeting the requirements for a reversible Li+ ion insertion electrochromic device to operate within the 300 K blackbody emission range. Multicycle optical switching and emittance modulation is demonstrated. The measured change in emissivity of the device is to 20%
Discovery of Very High-Energy Gamma-Ray Radiation from the BL Lac 1ES 0806+524
The high-frequency-peaked BL-Lacertae object \objectname{1ES 0806+524}, at
redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime
by VERITAS between November 2006 and April 2008. These data encompass the two-,
and three-telescope commissioning phases, as well as observations with the full
four-telescope array. \objectname{1ES 0806+524} is detected with a statistical
significance of 6.3 standard deviations from 245 excess events. Little or no
measurable variability on monthly time scales is found. The photon spectrum for
the period November 2007 to April 2008 can be characterized by a power law with
photon index between
300 GeV and 700 GeV. The integral flux above 300 GeV is
which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous
multiwavelength observations are combined with the VHE data to produce a
broadband spectral energy distribution that can be reasonably described using a
synchrotron-self Compton model.Comment: 14 pages, 4 figures, accepted to APJ
Towards a framework for critical citizenship education
Increasingly countries around the world are promoting forms of "critical" citizenship in the planned curricula of schools. However, the intended meaning behind this term varies markedly and can range from a set of creative and technical skills under the label "critical thinking" to a desire to encourage engagement, action and political emancipation, often labelled "critical pedagogy". This paper distinguishes these manifestations of the "critical" and, based on an analysis of the prevailing models of critical pedagogy and citizenship education, develops a conceptual framework for analysing and comparing the nature of critical citizenship
VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275
The recent detection by the Fermi gamma-ray space telescope of high-energy
gamma-rays from the radio galaxy NGC 1275 makes the observation of the very
high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly
interesting, especially for the understanding of active galactic nuclei (AGN)
with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently
observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE
gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence
level upper limit of 2.1% of the Crab Nebula flux level is obtained at the
decorrelation energy of approximately 340 GeV, corresponding to 19% of the
power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter
Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS
We report the detection of very-high-energy (VHE) gamma-ray emission from
supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the
VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission
overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a
full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of
the VHE emission is centered near the peak of the coincident 12CO (J = 1-0)
emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern
end of the SNR. Evidently the current-epoch particles from the pulsar wind
nebula are not participating in the gamma-ray production. The VHE energy
spectrum measured with VERITAS is well characterized by a power law dN/dE =
N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/-
0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2}
s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the
steady Crab Nebula emission above the same energy. We describe the observations
and analysis of the object and briefly discuss the implications of the
detection in a multiwavelength context.Comment: 5 pages, 2 figure
Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on its redshift
We report the first detection of very-high-energy (VHE) gamma-ray emission
above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The
photon spectrum above 140 GeV measured by VERITAS is well described by a power
law with a photon index of 3.8 +- 0.5_stat +- 0.3_syst and a flux normalization
at 200 GeV of (5.1 +- 0.9_stat +- 0.5_syst) x 10^{-11} TeV^-1 cm^-2 s^-1, where
stat and syst denote the statistical and systematical uncertainty,
respectively. The VHE flux is steady over the observation period between MJD
54881 and 55003 (2009 February 19 to June 21). Flux variability is also not
observed in contemporaneous high energy observations with the Fermi Large Area
Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from
the Swift XRT and MDM observatory, respectively. The broadband spectral energy
distribution (SED) is well described by a one-zone synchrotron self-Compton
(SSC) model favoring a redshift of less than 0.1. Using the photon index
measured with Fermi in combination with recent extragalactic background light
(EBL) absorption models it can be concluded from the VERITAS data that the
redshift of PKS 1424+240 is less than 0.66.Comment: accepted for publication, Ap
Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu
From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0
--> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and
555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of
215+-44 and 136+-8 events, respectively. From these samples, the branching
ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and
BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were
measured allowing the determination of the CKM matrix element |Vus| =
0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in
semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the
axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.
Visual masking: past accomplishments, present status, future developments
Visual masking, throughout its history, has been used as an investigative tool in
exploring the temporal dynamics of visual perception, beginning with retinal
processes and ending in cortical processes concerned with the conscious
registration of stimuli. However, visual masking also has been a phenomenon
deemed worthy of study in its own right. Most of the recent uses of visual
masking have focused on the study of central processes, particularly those
involved in feature, object and scene representations, in attentional control
mechanisms, and in phenomenal awareness. In recent years our understanding of
the phenomenon and cortical mechanisms of visual masking also has benefited from
several brain imaging techniques and from a number of sophisticated and
neurophysiologically plausible neural network models. Key issues and problems
are discussed with the aim of guiding future empirical and theoretical
research
- …