45 research outputs found
Entanglement study of the 1D Ising model with Added Dzyaloshinsky-Moriya interaction
We have studied occurrence of quantum phase transition in the one-dimensional
spin-1/2 Ising model with added Dzyaloshinsky-Moriya (DM) interaction from bi-
partite and multi-partite entanglement point of view. Using exact numerical
solutions, we are able to study such systems up to 24 qubits. The minimum of
the entanglement ratio R \tau 2/\tau 1 < 1, as a novel estimator of
QPT, has been used to detect QPT and our calculations have shown that its
minimum took place at the critical point. We have also shown both the
global-entanglement (GE) and multipartite entanglement (ME) are maximal at the
critical point for the Ising chain with added DM interaction. Using matrix
product state approach, we have calculated the tangle and concurrence of the
model and it is able to capture and confirm our numerical experiment result.
Lack of inversion symmetry in the presence of DM interaction stimulated us to
study entanglement of three qubits in symmetric and antisymmetric way which
brings some surprising results.Comment: 18 pages, 9 figures, submitte
Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays
The lifetime and oscillation frequency of the B0 meson has been measured
using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP.
The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the
production flavour of the B0 mesons was determined using a combination of tags
from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d
= 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first
error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
Measurement of Rb in e+e- Collisions at 182 - 209 GeV
Measurements of Rb, the ratio of the bbbar cross-section to the qqbar cross-
section in e+e- collisions, are presented. The data were collected by the OPAL
experiment at LEP at centre-of-mass energies between 182 GeV and 209 GeV.
Lepton, lifetime and event shape information is used to tag events containing b
quarks with high efficiency. The data are compatible with the Standard Model
expectation. The mean ratio of the eight measurements reported here to the
Standard Model prediction is 1.055+-0.031+-0.037, where the first error is
statistical and the second systematic.Comment: 21 pages, 5 figures, Submitted to Phys. Letts
Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances
Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1) alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF) activation. As a result mRNA related with Abscisic Acid (ABA) and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS), leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A). It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance
