260 research outputs found
ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter
Background: Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization.Results: Following sciatic nerve injury-transection or transection and reanastomosis-ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo) and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells), beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3.Conclusion: These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in regulating changes in gene expression necessary for preparing the distal segments of injured peripheral nerves for axonal regeneration. The absence of the ATF3 and c-Jun from CNS glia during Wallerian degeneration may limit their ability to support regeneration
Combination of a fusogenic glycoprotein, pro-drug activation and oncolytic HSV as an intravesical therapy for superficial bladder cancer
Background: There are still no effective treatments for superficial bladder cancer (SBC)/non-muscle invasive bladder cancer. Following treatment, 20% of patients still develop metastatic disease. Superficial bladder cancer is often multifocal, has high recurrences after surgical resection and recurs after intravesical live Bacillus Calmette-Guérin. Oncovex GALV/CD, an oncolytic herpes simplex virus-1, has shown enhanced local tumour control by combining oncolysis with the expression of a highly potent pro-drug activating gene and the fusogenic glycoprotein. Methods: In vitro fusion/prodrug/apoptotic cell-based assays. In vivo orthotopic bladder tumour model, visualised by computed microtomography. Results: Treatment of seven human bladder carcinoma cell lines with the virus resulted in tumour cell killing through oncolysis, pro-drug activation and glycoprotein fusion. Oncovex GALV/CD and mitomycin C showed a synergistic effect, whereas the co-administration with cisplatin or gemcitabine showed an antagonistic effect in vitro. Transitional cell cancer (TCC) cells follow an apoptotic cell death pathway after infection with Oncovex GALV/CD + with or without 5-FC. In vivo results showed that intravesical treatment with Oncovex GALV/CD prodrug (5-FC) reduced the average tumour volume by over 95% compared with controls.Discussion: Our in vitro and in vivo results indicate that Oncovex GALV/CD can improve local tumour control within the bladder, and potentially alter its natural history
Severe propylthiouracil-induced hepatotoxicity in pregnancy managed successfully by liver transplantation: A case report
<p>Abstract</p> <p>Introduction</p> <p>Propylthiouracil-induced severe hepatotoxicity is a relatively rare occurrence, with very few cases reported in the literature. The management of this complication in pregnancy can be a challenge because of the effects of the various treatment options on the fetus.</p> <p>Case presentation</p> <p>We report a rare case of fulminant hepatic failure in a 36-year-old gravida 2 black woman of African descent that occurred at 17 weeks gestation following propylthiouracil treatment for Graves' disease. Her liver failure was managed by liver transplantation and thyroidectomy. Her pregnancy was continued to term, though with not so favorable early childhood sequelae.</p> <p>Conclusion</p> <p>This case illustrates a very rare complication of treatment with a presumed safe drug during pregnancy followed by adverse neonatal outcomes due to the extensive treatment.</p
Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation
Meta-heuristic search methods are used to find near optimal global solutions for difficult optimization problems. These meta-heuristic processes usually require some kind of knowledge to overcome the local optimum locations. One way to achieve diversification is to start the search procedure from a solution already obtained through another method. Since this solution is already validated the algorithm will converge easily to a greater global solution. In this work, several well-known meta-heuristics are used to solve the problem of electricity markets participation portfolio optimization. Their search performance is compared to the performance of a proposed hybrid method (ad-hoc heuristic to generate the initial solution, which is combined with the search method). The addressed problem is the portfolio optimization for energy markets participation, where there are different markets where it is possible to negotiate. In this way the result will be the optimal allocation of electricity in the different markets in order to obtain the maximum return quantified through the objective function.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio
Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance
The role of APOBEC3 (A3) protein family members in inhibiting retrovirus infection and mobile element retrotransposition is well established. However, the evolutionary effects these restriction factors may have had on active retroviruses such as HIV-1 are less well understood. An HIV-1 variant that has been highly G-to-A mutated is unlikely to be transmitted due to accumulation of deleterious mutations. However, G-to-A mutated hA3G target sequences within which the mutations are the least deleterious are more likely to survive selection pressure. Thus, among hA3G targets in HIV-1, the ratio of nonsynonymous to synonymous changes will increase with virus generations, leaving a footprint of past activity. To study such footprints in HIV-1 evolution, we developed an in silico model based on calculated hA3G target probabilities derived from G-to-A mutation sequence contexts in the literature. We simulated G-to-A changes iteratively in independent sequential HIV-1 infections until a stop codon was introduced into any gene. In addition to our simulation results, we observed higher ratios of nonsynonymous to synonymous mutation at hA3G targets in extant HIV-1 genomes than in their putative ancestral genomes, compared to random controls, implying that moderate levels of A3G-mediated G-to-A mutation have been a factor in HIV-1 evolution. Results from in vitro passaging experiments of HIV-1 modified to be highly susceptible to hA3G mutagenesis verified our simulation accuracy. We also used our simulation to examine the possible role of A3G-induced mutations in the origin of drug resistance. We found that hA3G activity could have been responsible for only a small increase in mutations at known drug resistance sites and propose that concerns for increased resistance to other antiviral drugs should not prevent Vif from being considered a suitable target for development of new drugs
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
An unusual cause of haemoptysis in a young male
Inflammatory myofibroblastic tumours are reported to occur in a variety of sites, including the head and neck, abdominal organs, central nervous system and urinary tract. They only rarely occur in the lung. We report a case of a 25-year-old male admitted with haemoptysis. His chest radiograph showed a peripheral right lung opacity and computed tomography revealed a right lower lobe soft tissue density mass. Bronchoscopy and fine needle aspiration were unhelpful. a diagnosis of pulmonary carcinoma was made, and the patient underwent a right lower lobectomy. On pathology, the tumor was found to be an inflammatory pseudotumor. These lesion are extremely rare, constituting less than 1% of pulmonary malignancies, but are known to occur in young patients. We believe clinicians need to retain an index of suspicion for the presence of this disease in young patients, which can masquerade as more common malignancies
Studies on the Restriction of Murine Leukemia Viruses by Mouse APOBEC3
APOBEC3 proteins function to restrict the replication of retroviruses. One mechanism of this restriction is deamination of cytidines to uridines in (−) strand DNA, resulting in hypermutation of guanosines to adenosines in viral (+) strands. However, Moloney murine leukemia virus (MoMLV) is partially resistant to restriction by mouse APOBEC3 (mA3) and virtually completely resistant to mA3-induced hypermutation. In contrast, the sequences of MLV genomes that are in mouse DNA suggest that they were susceptible to mA3-induced deamination when they infected the mouse germline. We tested the possibility that sensitivity to mA3 restriction and to deamination resides in the viral gag gene. We generated a chimeric MLV in which the gag gene was from an endogenous MLV in the mouse germline, while the remainder of the viral genome was from MoMLV. This chimera was fully infectious but its response to mA3 was indistinguishable from that of MoMLV. Thus, the Gag protein does not seem to control the sensitivity of MLVs to mA3. We also found that MLVs inactivated by mA3 do not synthesize viral DNA upon infection; thus mA3 restriction of MLV occurs before or at reverse transcription. In contrast, HIV-1 restricted by mA3 and MLVs restricted by human APOBEC3G do synthesize DNA; these DNAs exhibit APOBEC3-induced hypermutation
- …