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Abstract. Meta-heuristic search methods are used to find near optimal global 

solutions for difficult optimization problems. These meta-heuristic processes 

usually require some kind of knowledge to overcome the local optimum 

locations. One way to achieve diversification is to start the search procedure from 

a solution already obtained through another method. Since this solution is already 

validated the algorithm will converge easily to a greater global solution. In this 

work, several well-known meta-heuristics are used to solve the problem of 

electricity markets participation portfolio optimization. Their search performance 

is compared to the performance of a proposed hybrid method (ad-hoc heuristic to 

generate the initial solution, which is combined with the search method). The 

addressed problem is the portfolio optimization for energy markets participation, 

where there are different markets where it is possible to negotiate. In this way the 

result will be the optimal allocation of electricity in the different markets in order 

to obtain the maximum return quantified through the objective function. 
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1 Introduction 

Metaheuristics can be defined as a set of search methods, such as construction 

heuristics, local search and more general orientation criteria to solve a specific problem. 

These have attracted the attention of many users due to their simplicity of 

implementation. In turn, the metaheuristics do not always reach an optimal solution, 

even for long computing times, but they manage to arrive at a near-optimal solution in 

a short time, which a deterministic resolution cannot obtain [1]. 

The performance measures, such as the value of the target solution and the execution 

time can be seen as random variables, because with an algorithm of this nature it is 

never known beforehand what the final result will be. Support for research on 
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metaheuristics can be provided by statistics. With statistics, it is possible to construct a 

systematic framework for the collection and evaluation of data, maximizing the 

objectivity and the reproducibility of the experiences. It is possible to construct a 

mathematical foundation that provides a probabilistic measure of events based on 

inference from the empirical data. In [2], it is possible to analyze the use of statistical 

tools in the study of algorithms and heuristics. 

The work presented in [3] analyzes and compares the use of this type of algorithms, 

where the analysis is executed considering two models defined by the author: 

• The univariate model, which considers the cost of the solution or the execution time; 

• The multivariate model, in which both the cost of the solution and the execution time 

are of interest. 

In the first case, the user is concerned with the cost of the solution (e.g., 

maximization / minimization problem) or the execution time as a measure of algorithm 

performance. When the interest is the cost of the solution, it is assumed that the 

computational resources are used in the same way by the different algorithms under 

study, it is called the principle of fairness. On the other hand, if the execution time is 

the parameter to be analyzed, it will have to be taken into account the number of times 

that a solution is obtained with the same characteristics in all the algorithms [4]. 

In the second case, the performance analysis of the algorithm includes the cost of 

solution and the execution time. In this case, the analysis falls within the scope of 

multivariate statistics, the authors [4] distinguish two specific scenarios about the 

multivariate model that may be of interest to the user, both are based on the cost of the 

solution and the time of execution, although they are distinguished by: In the first 

scenario the user only registers the final value (cost function x run time), and in the 

second scenario the user must save a set of values from the beginning of the search to 

the end, at each iteration it will save the value (cost function x run time). 

In order to be able to return a solution to the problems described above, the case of 

the final value of the cost function can be a random value, the following methodology 

is proposed, as expressed in the pseudo-code of Fig. 1. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 𝑖 = 1 

𝒘𝒉𝒊𝒍𝒆 (𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)  
{ 

𝑺𝒆𝒕𝒑 𝟏. (𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥𝑖 

𝑺𝒕𝒆𝒑 𝟐. (𝑆𝑒𝑎𝑟𝑐ℎ) 

𝐴𝑝𝑝𝑙𝑦 𝑎 𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑜 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑥𝑖 

𝐿𝑒𝑡 𝑥𝑖
′ 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 

𝒊𝒇 (𝑠𝑖
′ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 

𝑖 = 𝑖 + 1 

} 
 

Fig. 1 Multi-Start Procedure [5] 



 

 

Fig. 1 shows the pseudo-code of a multi start procedure. The solution 𝑥𝑖 is 

constructed in Step 1 at iteration i. This is a typically performed with an iterative 

algorithm. Step 2 is devoted to improving this solution, obtaining solution  𝑥𝑖
′. A simple 

improvement method can be applied. However, this second phase has recently become 

more elaborate and, in some cases, is performed with a complex metaheuristic that may 

or may not improve the initial solution 𝑥𝑖 (in this latter case we set 𝑥𝑖
′ = 𝑥𝑖) [5].  

This type of procedure is called multi-start methods, considering the pseudo-code of 

the Fig. 1, in the first step the construction of the initial solution can be developed 

through a simpler search method (Local Search (LS), Tabu Search (TS)), and in step 2, 

a more elaborate method (Particle Swarm Optimization (PSO), Genetic Algorithm 

(GA), or Simulated Annealing (SA)), which will require more complexity in 

implementation. More search time should be given to the second step, because a more 

powerful algorithm is used to obtain better values in its performance. 

The presented pseudo-code can be applied to any type of problem as long as it has a 

type of objective function to solve. In the case addressed by this paper, the problem in 

hands is the optimization of portfolios in electricity markets. This paper proposes a 

heuristic methodology to determine an initial solution in the portfolio optimization 

problem. The objective of this heuristic is to provide a good initial point for the search 

process, so that the meta-heuristics can achieve solutions nearer to the global optimum, 

and in faster execution times (without the need for long search processes). According 

to the pseudo-code presented above, in the first step a solution is generated through the 

use of the heuristic created for this purpose. In the second step, the optimization with 

different algorithms, PSO, GA and SA, is performed. In the end, a comparison is made 

on the performance of the algorithms with the use of the proposed initial solution 

heuristic and without its use. This comparison takes into account the multivariate 

analysis model, where it considers the value of the function cost, execution time and 

also the number of iterations. 

After this introductory section, section 2 presents the mathematical formulation of 

the electricity markets participation portfolio optimization problem that is addressed. 

The proposed heuristic for generating the initial solution is also presented in this 

section. Section 3 presents the description of the case study used to validate the 

proposed method, and section 4 presents the achieved results. Finally, section 5 presents 

the most relevant conclusions of this work.  

2 Portfolio optimization  

The portfolio optimization problem was firstly introduced by Henry Markowitz [6], 

with application in the field of finance and economics. This problem addressed by 

Markowitz considers a model which efficiently allocates a number of assets so that the 

future will bring positive return with a certain level of risk. In energy markets this 

problem is also relevant, especially concerning the support of market negotiating 

player’s decisions. Given the available market opportunities, players need to decide 

whether to and how to participate in each market type, in order to obtain as much gain 

as possible from their negotiations. 



 

 

The problem of portfolio optimization has been applied in different areas, but more 

important than that is the techniques that have been applied to try to solve it. In 1956, 

the author who presented the methodology presented in [7] a discussion about the 

application of a computational technique to solve the model using the formulation of 

quadratic problems. But three years later Philip Wolfe in [8], proposes the resolution of 

the problem using the simplex method. 

Years later, with the development of science and technology, the artificial 

intelligence (AI) was born, and it would bring with it the intelligent research algorithms. 

Nowadays many types of meta-heuristics have been applied to solve the problem, for 

example, local search techniques were applied in [9], the SA optimization technique 

was implemented to the problem in [10], the PSO [11], neural networks (NN) [12] and 

GA [13] were also already used to solve the problem of portfolio optimization in 

different fields of application. The application of the portfolio optimization model in 

the electric sector has, however, been a rather absent subject of research. Among the 

few exceptions are a model of risk management in the short term, by applying the 

Markowitz model to optimize the portfolio and minimize risk in energy markets [14]. 

A methodology for participation in electricity markets for the following day is 

presented in [15] using portfolio optimization. IA techniques are used in this work, 

namely the PSO. In this publication, the author's main objective is to provide support 

to the participants' participation in electricity markets. For this reason, the methodology 

proposed by the author is part of a decision support system called Multi-Agent 

Simulator for Competitive Electricity Markets (MASCEM) [16]. 

In this work, as previously mentioned, a heuristic is presented, which allows the 

construction of a valid initial solution, which serves as input data for the portfolio 

optimization problem. This heuristic thus aims at improving the initial search point 

from different AI algorithms. The final results are used to provide decision support to 

electricity market participants in order to aid them in taking the most profitable 

negotiation decisions. 

2.1 Mathematical formulation  

In this section the presentation of the proposed model for the optimization is made. 

It should be emphasized that the considered model does not follow mathematically the 

model proposed by Markowitz, but the basis concept is the same. The proposed model, 

tries to allocate electricity in the different electricity markets in an optimal way, 

generating a maximum level of profit, while respecting the imposed rules. 

Equation (1) represented the objective function, which models the optimization of 

players’ market participation portfolio. This function considers the expected production 

of a market player for each period of each day, and the amount of power to be negotiated 

in each market is optimized to get the maximum income that can be achieved [15].    



 

 

(𝑆𝑝𝑜𝑤𝑀…𝑁𝑢𝑚𝑆 , 𝐵𝑝𝑜𝑤𝑆1…𝑁𝑢𝑚𝑆)

= 𝑀𝑎𝑥

[
 
 
 
 
 

∑ (𝑆𝑝𝑜𝑤𝑀,𝑑,𝑝 × 𝑝𝑠𝑀,𝑑,𝑝 × 𝐴𝑠𝑒𝑙𝑙𝑀)

𝑁𝑢𝑚𝑀

𝑀=𝑀1

−

∑ (𝐵𝑝𝑜𝑤𝑆 × 𝑝𝑠𝑆,𝑑,𝑝 × 𝐴𝑏𝑢𝑦𝑆)

𝑁𝑢𝑚𝑆

𝑆=𝑆1 ]
 
 
 
 
 

 (1) 

∀𝑑 ∈ 𝑁𝑑𝑎𝑦, ∀𝑝 ∈ 𝑁𝑝𝑒𝑟, 𝐴𝑠𝑒𝑙𝑙𝑀 ∈ {0,1}, 𝐴𝑏𝑢𝑦 ∈ {0,1} 

In equation (1) 𝑑 represents the weekday, 𝑁𝑑𝑎𝑦 represent the number of days, 𝑝 

represents the negotiation period, 𝑁𝑝𝑒𝑟 represent the number of negotiation periods, 

𝐴𝑠𝑒𝑙𝑙𝑀 and 𝐴𝑏𝑢𝑦𝑆 are boolean variables, indicating if this player can enter negotiations 

in each market type, 𝑀 represents the referred market, 𝑁𝑢𝑚𝑀 represents the number 

of markets, 𝑆 represents a session of the balancing market, and 𝑁𝑢𝑚𝑆 represents the 

number of sessions. Variables 𝑝𝑠𝑀,𝑑,𝑝 and 𝑝𝑠𝑆,𝑑,𝑝 represent the expected (forecasted) 

prices of selling and buying electricity in each session of each market type, in each 

period of each day. The outputs are 𝑆𝑝𝑜𝑤𝑀  representing the amount of power to sell in 

market 𝑀, and 𝐵𝑝𝑜𝑤𝑆 representing the amount of power to buy in session 𝑆. 

In equation (2) is expressed the way in which the negotiation prices are obtained. As 

one can see, sale prices 𝑝𝑠𝑀,𝑑,𝑝 and purchase prices 𝑝𝑠𝑆,𝑑,𝑝 are considered. 

𝑝𝑠𝑀,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝑆𝑝𝑜𝑤𝑀 , 𝑀) 
(2) 

𝑝𝑠𝑆,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑑, 𝑝, 𝐵𝑝𝑜𝑤𝑆 , 𝑆) 

The 𝑉𝑎𝑙𝑢𝑒 is obtained by equation (3), and is calculated from the application of the 

clustering and fuzzy approach. 

Value(day,per,Pow,Market)=Data(fuzzy(pow),day,per,Market) (3) 

With the implementation of this model, it is possible to obtain market prices based 

on the traded amount. In order to achieve this, for the modeling of the prices are 

considered the expected production of a market player for each period of each day. The 

results of the application of this methodology can be observed in [17]. Equation (3) 

defines this condition, where Data refers to the historical data that correlates the amount 

of transacted power, the day, period of the day and the particular market session. 

Equation (4) represents the main constraint of this problem. The constraint imposes 

that the total power that can be sold in the set of all markets is never higher than the 

total expect production (TEP) of the player, plus the total of purchased power.  

∑ 𝑆𝑝𝑜𝑤𝑀

𝑁𝑢𝑚𝑀

𝑀=𝑀1

≤ 𝑇𝐸𝑃 + ∑ 𝐵𝑝𝑜𝑤𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1

 (4) 

Equations (5), (6) and (7) represent other constraints that can be applied to the 

problem. This depends on the nature of the problem itself, e.g. type of each market, 

negotiation amount, type of supported player (renewable based generation, 

cogeneration, etc.).    

𝑇𝐸𝑃 =  ∑𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑 , 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑 ∈ {𝑅𝑒𝑛𝑒𝑤𝑝𝑟𝑜𝑑 , 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑} (5) 



 

 

0≤ 𝑅𝑒𝑛𝑒𝑤𝑝𝑟𝑜𝑑 ≤ 𝑀𝑎𝑥𝑝𝑟𝑜𝑑  (6) 

𝑀𝑖𝑛𝑝𝑟𝑜𝑑 ≤ 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑 ≤ 𝑀𝑎𝑥𝑝𝑟𝑜𝑑 , 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑 > 0 (7) 

By (5) it can be seen that the energy production may come from renewable sources 

and thermoelectric sources. If the player is a producer of thermoelectric power, the 

production must be set at a minimum since it is not feasible to completely turn off the 

production plant, as can be observed by equation (7). If the producer is based on 

renewable energy, the only restriction is the maximum production capacity, as in (6). 

2.2 Proposed initial solution heuristic  

The proposed heuristic for initial solutions generation aims at providing an adequate 

initial point for metaheuristics search process. Thus, the goal is to use ad-hoc 

knowledge on the problem to create a set of generic rules that allow initial solutions to 

be generated automatically in order to feed the metaheuristic methods. The proposed 

heuristic is composed by the following steps: 

• 1st - In the Spot market, since it is impossible to buy energy, when the player 

participates to sell, the value of this variable is automatically zero (8); 

𝑖𝑓 𝑀 = Spot Market, 𝐵𝑝𝑜𝑤𝑀 = 0 (8) 

• 2nd - The spot market price is compared with the prices of the intraday and 

balancing market sessions, and the higher price is saved (9); 

𝑠𝑒𝑎𝑟𝑐ℎ (max 𝑝𝑠𝑀,𝑑,𝑝), 𝑠𝑎𝑣𝑒 𝑝𝑠𝑀,𝑑,𝑝 (9) 

• 3rd - The sale or purchase price is calculated for bilateral contracts and local 

markets (considered in this model as Smart Grid (SG) level markets), considering 

the maximum amount of power available for purchase. If the maximum selling 

price is greater than these, the maximum purchase quantity in the two previous 

markets is allocated (10). This enables players to purchase power at lower prices 

in order to sell it in market opportunities with higher expected price; 

𝑖𝑓 𝑠𝑎𝑣𝑒𝑑 𝑝𝑟𝑖𝑐𝑒 ≥  𝑝𝑠𝑀,𝑑,𝑝(max 𝐵𝑝𝑜𝑤) 

𝐵𝑝𝑜𝑤𝑀 = max 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 , 𝑓𝑜𝑟 𝑀 = 𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑎𝑛𝑑 𝑆𝐺 

where:  

• max 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 is the maximum purchase quantity 

(10) 

• 4th - Since in the various sessions of the balancing and intraday market it is only 

possible to perform one of the shares in each negotiation period (buy or sell), the 

maximum price verified in all market sessions is compared with the purchase price 

of the maximum quantity in each of the balancing market sessions. If the 

maximum price is higher, the maximum amount of purchase will be automatically 



 

 

allocated in the balancing or intraday market sessions (11), following the same 

logic as in step 3; 

𝑖𝑓 𝑝𝑠𝑀,𝑑,𝑝(max𝐵𝑝𝑜𝑤) 𝑓𝑜𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ≤ 𝑝𝑟𝑖𝑐𝑒 𝑠𝑎𝑣𝑒𝑑 

𝐵𝑝𝑜𝑤𝑀 = max 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 , 𝑓𝑜𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 
(11) 

• 5th- The sum of the power amount allocated to be bought with the available 

quantity resulting from own production is obtained, thus obtaining the total 

quantity available to sell (12); 

max 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝑓𝑜𝑟 𝑠𝑎𝑙𝑒 = max 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦  𝑏𝑢𝑦 + 𝑇𝐸𝑃 (12) 

• 6th - Since there are markets where the expected price is highly dependent on the 

negotiated quantity (e.g. bilateral contracts), the sale price in those markets is 

calculated for several intervals of quantities (e.g. from 10 in 10 MW) up to the 

maximum available for sale (13); 

𝑖𝑓 𝐵𝑝𝑜𝑤, 𝑆𝑝𝑜𝑤 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑡ℎ𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦, 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛 

𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛 =  𝑏𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 
(13) 

• 7th - A search is made iteratively to search if there is an amount of electricity in 

which the price in the market is higher than the maximum found price. This search 

is done only for markets where the expected price is highly dependent on the 

negotiated quantity. If any is found, the correspondent quantity is allocated to that 

market (14). 

𝑖𝑓 𝑀 = 𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑎𝑛𝑑 𝑆𝐺,  

𝑠𝑒𝑎𝑟𝑐ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑤ℎ𝑒𝑟𝑒 𝑝𝑟𝑖𝑐𝑒 > 𝑠𝑎𝑣𝑒𝑑 𝑝𝑟𝑖𝑐𝑒  
(14) 

• 8th - The quantity available for sale is updated based on the amount allocated in 

the two previous markets (15); 

𝑠𝑎𝑙𝑒 𝑞𝑢𝑎𝑛𝑡𝑦 = max 𝑞𝑢𝑎𝑛𝑡𝑦  𝑓𝑜𝑟 𝑠𝑎𝑙𝑒 − 𝑆𝑝𝑜𝑤𝑀;  𝑀
= (𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑆𝐺) 

(15) 

• 9th - To allocate the electricity that is lacking, look for the market where the 

remaining amount can be more profitable and, respecting the impossibility of 

buying and selling in the same market, this quantity is allocated (16). 

 𝐵𝑝𝑜𝑤 = 𝑚𝑎𝑥 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑠𝑎𝑙𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦, 𝑓𝑜𝑟 𝑆𝑝𝑜𝑡 𝑜𝑟 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 (16) 

After all the steps have been completed, the constraints of the problem must be 

applied in order to guarantee that the solution is valid and that the research is started 

without creating a random solution. 



 

 

3 Case study 

This case study considers seven different metaheuristic algorithms to perform the 

optimization of the presented portfolio optimization formulation, being them: PSO 

[18], EPSO [19], QPSO [20], NPSO-LRS [21], MPSO-TVAC [22], AG [23] and SA 

[24]. The proposed heuristic is used to find an initial solution for the algorithms. A 

comparison is made between the performances of the algorithms when using the 

proposed initial solution heuristic and when using a random initial solution.  

In order to define a realistic scenario, five different market types have been 

considered, thereby enabling the supported market player to sell and buy in all of them. 

The considered markets are the day-ahead spot market, negotiations by means of 

bilateral contracts, the balancing (or intra-day) market, and a local market, at the Smart-

Grid (SG) level. The balancing market is divided into different sessions. In the day-

ahead spot market the player (acting as seller) is only allowed to sell electricity, while 

in the other market types the player can either buy or sell depending on the expected 

prices. Limits have also been imposed on the possible amount of negotiation in each 

market. In this case, it is only possible to buy up to 10 MW in each market in each 

period of negotiation, which makes a total of 40 MW purchased. It is possible to sell 

power on any market, and it can be transacted as a whole or in installments. The player 

has 10 MW of own production for sale. 

In this problem, it has also been imposed that in each session of the balancing market, 

the player can only either sell or buy in each period. In bilateral contracts and in SG 

negotiation, it is possible to both sell and purchase in the same period (by negotiating 

with different players). Since the optimization requires real market data, so that it can 

be used to support players’ decisions in a realistic environment, it is necessary that the 

electricity prices are provided. The real electricity market prices data, concerning the 

day-ahead spot market, the intraday market, and bilateral contracts have been extracted 

from website of the Iberian electricity market operator –MIBEL [25]. Local SG market 

prices are based on the results of previous studies [15]. 

4 Results 

Table 1 presents the results for the first period of the considered simulation day, of 

the various methods when using a random initial solution, and when using the initial 

solution generated by the heuristic proposed in section 2.2 (methods with the suffix -

ST). When using the proposed heuristic, all the presented algorithms start their search 

from a solution already defined by the set of rules expressed by the heuristic. It should 

be noted that the algorithms were all applied in the same conditions (same machine, 

same input data, etc.) so that there are no variations due to external factors. A total of 

1000 executions have been run for each simulation. 

As can be seen from Table 1, when the algorithms are executed using the initial 

solution generated by the proposed heuristic, the observed values for the objective 

function undergo changes. The algorithms that use the initial solution, as expected, 

present a minimal solution larger than those that do not use it. In terms of maximum 

reached value, most of the algorithms can reach very close maxima, with or without 



 

 

initial solution. The algorithms using the initial solution have a higher average than 

others, as well as a lower standard deviation, which means that the variability of results 

when using an initial solution is lower. In terms of execution time and required number 

of iterations, the values generally decrease when using the proposed heuristic. 

Figure 2 presents the box plots for all applied methods. The box plots are constructed 

based on the observed results obtained in the simulations, namely the maximum and 

minimum, and from three calculated parameters: the median, the value of the first 

quartile and the third quartile. This representation is very useful because it allows a 

representation of how the results data is distributed as to the greater or lesser 

concentration, symmetry or existence of values outside the context of the results. It is 

also very useful in comparing groups of results. 

Table 1. Optimization results for the different methods 

Algorithms 
Value of Objective Function (€) Execution Time (s) Iteration number 

Min Max Mean STD Mean STD Mean STD 

PSO 571,5 1998,6 1483,8 270 0,184 0,035 64 10,9 

PSO - ST 1805,7 2000,6 1981,1 47,4 1,046 0,277 384 101 

EPSO 482,8 2000,6 1579,4 307 27,93 54,814 1621 3173,9 

EPSO - ST 1875,1 2000,6 1972,7 28,4 13,168 30,568 783 1808,2 

QPSO 320,7 1998,9 1232 305 0,292 0,116 61 35,2 

QPSO - ST 1730,2 2000,6 1939,2 56,4 0,282 0,09 63 26 

NPSO-LRS 1416,4 2000,6 1762,4 144 1,5 0,466 363 112 

NPSO-LRS - ST 1889,1 2000,6 1992,1 20,9 1,806 0,499 448 122 

MPSO-TVAC 1416,6 2000,6 1947,2 133 6,841 0,871 492 60,2 

MPSO-TVAC - ST 1816,7 2000,6 1873,7 85,1 4,059 0,232 298 11,4 

AG 1545,5 2000,6 1971,2 76,4 7,478 0,679 2625 218 

AG - ST 1730,2 2000,6 1993 40,3 4,728 0,743 1663 255 

SA 1781,5 1927,2 1884 55,5 0,551 0,021 1831 26,1 

SA - ST 1945 2000,6 1988,3 11,7 0,51 0,02 1730 6,4 

 

Fig. 2 Box plot for the applied methods 

As can be seen from Figure 2, it is visible that the minimum values undergo 

considerable changes when using the proposed heuristic for generation of the initial 

solution. It is noteworthy that the QPSO, which was the algorithm that suffered the 

greatest change of minimum value, went from 1232.7 € to 1956 €. Another of the 
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characteristics to be considered is the value between 1st quartile and 3rd quartile, since 

this distance represents 50% of the observations; the less the distance the more reliable 

the method will be. All methods using the proposed heuristic have significantly 

decreased the distance between these two quartiles. In terms of maximum values, 

although the algorithms with the initial solution reached the best maximums, the 

previous versions with random initial solutions also managed to reach very close values 

(at the cost of higher execution times and variability); except the SA, as it was the 

method that obtained a greater improvement. 

Table 2 presents the results of upper bound, lower bound and error values for the 95% 

confidence intervals of all the executed simulations (1000 simulations). 

Table 2. Error of confidence interval 95% 

Type solution PSO EPSO QPSO 
NPSO-

LRS 

MPSO-

TVAC 
AG SA 

Random 

Upper 

bound 

1500,5

8 

1598,4

1 
1250,89 1771,31 1955,41 

1975,9

1 

1887,4

8 

Lower 
bound 

1467,0
9 

1560,3
8 

1213,03 1753,42 1938,90 
1966,4

4 
1880,6

1 

Error 16,74 19,01 18,93 8,94 8,25 4,73 3,43 

Heuristic 

Upper 

bound 

1984,0

1 

1974,4

9 
1942,69 1993,35 1879,00 

1995,4

6 

1988,9

9 

Lower 
bound 

1978,1
3 

1970,9
7 

1935,70 1990,76 1868,46 
1990,4

7 
1987,5

4 

Error 2,90 1,75 3,49 1,29 5,27 2,49 0,72 

From Table 2 it can be verified that there is a great difference of values between the 

results when using the random solution and the heuristic for the majority of the 

presented methods. The PSO, EPSO and QPSO methods are the ones that benefit most 

with the proposed method, because as it is possible to observe, both the upper and lower 

limits have risen considerably to near the maximum value. On the other hand, the error 

value has decreased considerably. From the analysis of the results of the 95% 

confidence intervals, the proposed heuristic for the determination of the initial solution 

shows clear advantages over the random solution.  

In Fig. 3 is presented the performance of NPSO-LRS with random solution and 

heuristic solution. This algorithm is chosen because it showed a great difference in 

terms of objetive funtion STD when comparing the random and heuristic solution. 

From Fig. 3 it can be seen that both algorithms converge to very close maximum 

solutions. The big difference is in the STD, which decreases considerably when using 

the proposed initial solution heuristic (from 144 to 20.9 when using the random initial 

solution). It should also be noted that the results of the heuristic solution have a scale 

on the y-axis different from the random solution, this is due to the initial solution of the 

heuristic solution being 1730 €. Fig. 4 shows the energy purchased and sold in each 

market for the SA whne using the random solution and heuristic solution, this algorithm 

was chosen because it is possible to observe the large diferences in the two algorithms. 



 

 

 
Fig. 3 NPSO-LRS performance 

 

Fig. 4 Purchase and the sale in different markets 

Figure 4 shows the results of the SA algorithm when using the random solution, 

when using the proposed heuristic for initial solution and also the values generated by 

the proposed heuristic by itself. By analyzing the objective function values, the SA 

Random registered 1927 €, SA heuristic 2000,6 € and heuristic 1730 €. It is possible to 

verify that the heuristic presents a solution that is already close to the maximum vale 

achieved by the meta-heuristic search process, and then it is up to the algorithms to 

refine that solution to obtain a better result. The SA heuristic was the one that registered 

the best value of objective function and one can see that it defined to buy the maximum 

quantity of electricity in the balancing markets (10 MW), and to purchase of 4.7 MW 

in bilateral contracts. The sale is set to the Smart Grid in 8.6 MW, 13.3 MW in Bilateral 

Contracts and 13.8 MW in the Spot market. 

A curiosity is that SA random has a higher volume of transacted electricity (40 MW), 

but does not represent a greater profit because it was necessary to buy more electricity. 

The SA heuristic traded 34.7 MW and made a better profit. 
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5 Conclusions  

This paper presented a heuristic to generate a good initial solution for meta-heuristic 

methods. The proposed heuristic proved to be advantageous since the results present 

considerable advantages in relation to the previous results, using random initial 

solutions. By defining this starting point for the algorithms they can obtain better values 

in their general search process. This is visible by the analysis of the STD, because the 

lower value means that the solutions are closer to the average. The average with this 

modification also gets closer to the maximum value which, coupled with the small STD, 

makes the set of solutions very strong. 

As future work, authors intend create a multiobjective a model of that considers the 

risk in calculation of the return, as well as to develop a heuristic that allows the same 

association between profit and risk. 
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