4,979 research outputs found

    Swift J004427.3-734801- a probable Be/white dwarf system in the Small Magellanic Cloud

    Full text link
    Swift J004427.3-734801 is an X-ray source in the Small Magellanic Cloud (SMC) that was first discovered as part of the Swift S-CUBED programme in January 2020. It was not detected in any of the previous 3 years worth of observations. The accurate positional determination from the X-ray data have permitted an optical counterpart to be identified which has the characteristics of an O9V-B2III star. Evidence for the presence of an IR excess and significant I-band variability strongly suggest that this is an OBe type star. Over 17 years worth of optical monitoring by the OGLE project reveal periods of time in which quasi-periodic optical flares occur at intervals of ~21.5d. The X-ray data obtained from the S-CUBED project reveal a very soft spectrum, too soft to be that from accretion on to a neutron star or black hole. It is suggested here that this a rarely identified Be star-white dwarf binary in the SMC.Comment: 6 Pages, 8 Figures. Accepted by MNRAS 2020 June 8. Received 2020 June 5; in original form 2020 April 2

    A major outburst from the X-ray binary RX J0520.5-6932

    Full text link
    We report on the analysis of 8 years of MAssive Compact Halo Objects (MACHO) data for the source RX J0520.5-6932. A regular period of 24.4 days has been confirmed, however this is manifest almost entirely in the red part of the spectrum. A major outburst, lasting approximately 200 days, was observed which increased the apparent brightness of the object by approximately 0.15 magnitudes without significantly altering its V-R colour index. This outburst was also seen in X-ray data. The evidence from this analysis points to the identification of this object as a Be/X-ray binary with a periodically variable circumstellar disk and a very early optical counterpart.Comment: Paper has been accepted by MNRA

    INTEGRAL deep observations of the Small Magellanic Cloud

    Full text link
    Deep observations of the Small Magellanic Cloud (SMC) and region were carried out in the hard X-ray band by the INTEGRAL observatory in 2008-2009. The field of view of the instrument permitted simultaneous coverage of the entire SMC and the eastern end of the Magellanic Bridge. In total, INTEGRAL detected seven sources in the SMC and five in the Magellanic Bridge; the majority of the sources were previously unknown systems. Several of the new sources were detected undergoing bright X- ray outbursts and all the sources exhibited transient behaviour except the supergiant system SMC X-1. They are all thought to be High Mass X-ray Binary (HMXB) systems in which the compact object is a neutron star.Comment: 7 pages, 10 figures Accepted for publication in MNRA

    Geometry induced entanglement transitions in nanostructures

    Full text link
    We model quantum dot nanostructures using a one-dimensional system of two interacting electrons. We show that strong and rapid variations may be induced in the spatial entanglement by varying the nanostructure geometry. We investigate the position-space information entropy as an indicator of the entanglement in this system. We also consider the expectation value of the Coulomb interaction and the ratio of this expectation to the expectation of the confining potential and their link to the entanglement. We look at the first derivative of the entanglement and the position-space information entropy to infer information about a possible quantum phase transition.Comment: 3 pages, 2 figures, to appear in Journal of Applied Physic

    The entanglement of few-particle systems when using the local-density approximation

    Full text link
    In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the `interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density---which can be obtained directly from the system density and hence easily from density-functional theory methods---can be considered as a proxy measure for the spatial entanglement for the test systems.Comment: 12 pages and 5 figures

    Long-term Properties of Accretion Disks in X-ray Binaries: II. Stability of Radiation-Driven Warping

    Full text link
    A significant number of X-ray binaries are now known to exhibit long-term ``superorbital'' periodicities on timescales of ∼\sim 10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, in particular warping and/or precession of the accretion disk. Recent theoretical work predicts the stability to disk warping of X-ray binaries as a function of the mass ratio, binary radius, viscosity and accretion efficiency, and here we examine the constraints that can be placed on such models by current observations. In paper I we used a dynamic power spectrum (DPS) analysis of long-term X-ray datasets (CGRO, RXTE), focusing on the remarkable, smooth variations in the superorbital period exhibited by SMC X-1. Here we use a similar DPS analysis to investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4 and Her X-1, and thereby confront stability predictions with observation. We find that the period and nature of superorbital variations in these sources is consistent with the predictions of warping theory. We also use a dynamic lightcurve analysis to examine the behaviour of Her X-1 as it enters and leaves the 1999 Anomalous Low State (ALS). This reveals a significant phase shift some 15 cycles before the ALS, which indicates a change in the disk structure or profile leading into the ALS.Comment: 12 pages, 14 figures, Re-submitted to MNRAS after referee's comment

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    Disc loss and renewal in A0535+26

    Get PDF
    This paper presents observations of the Be/X-ray binary system A0535+26 revealing the first observed loss of its circumstellar disc, demonstrated by the loss of its JHK infrared excess and optical/IR line emission. However optical/IR spectroscopy reveals the formation of a new inner disc with significant density and emission strength at small radii; the disc has proven to be stable over 5 months in this intermediate state.Comment: 4 pages, 4 figures, accepted by MNRAS, uses mn.st
    • …
    corecore