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Hubbard model as an approximation to the entanglement in nanostructures

J. P. Coe1,∗ V. V. França2,† and I. D’Amico1‡

1 Department of Physics, University of York, York YO10 5DD, United Kingdom.
2 Physikalisches Institut, Albert-Ludwigs-Universität, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany.

We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped

in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via

a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We

compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction.

We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss

analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between

interaction and potential shape in the quantum well system dictates the position and size of the entanglement

maxima and the agreement with the theoretical limits. Finally we calculate the spatial entanglement for the

quantum well system and compare it to its average single-site entanglement.

PACS numbers: 03.65.Ud, 71.10.Fd, 73.21.La, 73.21.Fg

I. INTRODUCTION

Entanglement is considered one of the main resources in

quantum information and a reason why quantum computers

may be used for computing feats that could not be achieved

with traditional processors [1]. In this context quantum dots

are thought of as a viable possibility in the quest to construct

scalable quantum processors [2–9]. With this in mind, finding

accurate ways to calculate the entanglement between electrons

in quantum dots becomes important for quantum information

processing. However modeling these many-body quantum

systems often necessitates the employment of approximations.

For example, one-dimensional wells may be used in the study

of spherically symmetric quantum dots and aid understanding

of trends in more general quantum dot systems [10].

The Hubbard model [11] allows interacting many-body sys-

tems to be simulated by mapping them onto a lattice model

with (usually) on-site interactions only. Despite its relative

simplicity it still captures a significant amount of physics:

for example, in strongly correlated fermionic systems it has

been used to model particles trapped in an optical lattice [12],

high Tc superconductivity [13], and the metal-insulator transi-

tion [14]. The one-dimensional homogeneous Hubbard model

(HM) also benefits from the existence of an exact solution in

the thermodynamic limit [15]. Recently the use of the Hub-

bard model as an approximation to the exchange coupling

in quantum-dot nanostructures has been investigated [16].

The entanglement of the one-dimensional Hubbard model has

been investigated in Refs. [17–19]. A local-density approx-

imation (LDA) to the entanglement has been proposed in

Ref. [20] and applied to inhomogeneous systems.

In this paper we compare the Hubbard model predictions

to results from a system of two interacting fermions trapped

within a chain of square well potentials. Here each well cor-

responds to one of the Hubbard model sites. We consider both
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†Electronic address: vivian.franca@physik.uni-freiburg.de
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repulsive (electron-electron) and attractive interactions, and

calculate the corresponding entanglement when the strength

of the interaction, the chain length, and the interwell dis-

tance are changed. We compare these results with the average

single-site entanglement calculated from the Hubbard model.

In doing this we infer information on the accuracy of using

results from the Hubbard model to approximate the average

single-site entanglement of the quantum well system. If the

entanglement of electrons in quantum wells can be described

using the Hubbard model, then, by using the powerful LDA

formalism developed in [20], we could in principle calculate

the entanglement present in quantum well systems with a large

number of interacting electrons. This would be a non-trivial

result as a direct calculation of the entanglement for a system

with a large number of interacting electrons becomes compu-

tationally prohibitive as the number of particles increases.

In Sec. II we introduce the one-dimensional quantum well

system and discuss how we numerically calculate the single-

site entanglement. In Sec. III we compare the results from

the one-dimensional Hubbard model with the ones from the

quantum well system for different interwell distances, chain

length, and Coulomb interaction strength. We also investigate

how the interaction strength affects the electronic density, and

its effect on the matching between the Hubbard and quantum

well system. In Sec.IV we propose an upper bound for the

average single-site entanglement of the quantum well system

and discuss the large Coulomb interaction limit. We investi-

gate how close our numerical results come to these analytical

expressions. In Sec. V we compare attractive and repulsive

particle-particle interaction, as well as discussing the large

interparticle attraction limit. Sec. VI is devoted to the com-

parison between the average single-site entanglement with the

spatial entanglement for the quantum well system and finally

Sec. VII contains our conclusions.

II. THE QUANTUM WELL TWO-ELECTRON SYSTEM

The Hamiltonian, in atomic units, for the one-dimensional

system of two electrons confined within an array of quantum
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wells (QWs) is given by

H =
∑

i=1,2

(

−
1

2

d2

dx2
i

+ v(xi)

)

+ CUf(|x1 − x2|). (1)

The potential v(xi) models a string of regularly spaced, iden-

tical square wells, symmetric around the origin, and defined

by the quantities: M the number of wells, w the width of each

well, d the barrier width between two consecutive wells, and

v0 the depth of each well. We set f(x) = δ(x) to model a

contact Coulomb repulsion and define CU as the interaction

strength. CU will allow us to compare the system with the

Hubbard model.

We solve the time independent Schrödinger equation corre-

sponding to Eq. (1) by using ‘exact’ diagonalization; the elec-

tronic ground state is a singlet thereby satisfying the stipula-

tion of zero magnetization. We calculate the spatial part of the

many-body wavefunction using the first N eigenfunctions of

the potential v(x) as single-particle basis functions. We em-

ploy these to produce a basis of symmetric two-particle wave-

functions which means we only need to considerN(N+1)/2
functions. The form of the Hamiltonian is conducive to this

method as by varying the interaction strength independently

we do not need to recalculate the basis, or any integral in-

volved in the diagonalization, as could be the case if we varied

the well geometry directly. In this respect we note that a sys-

tem with CU = K , depth v0, well width w and barrier width

d is equivalent to a system with CU = 1, depth v0/K
2, well

width Kw, and barrier width Kd.

A. Average single-site entanglement

We wish to calculate the average single-site (or local) entan-

glement of the system ground state. This type of entanglement

is relevant for systems of indistinguishable fermions [21]. To

this aim we divide our QW system in contiguous ‘sites’, each

site centered around a single well.

The entanglement entropy S of the system is given by

S =
1

M

M
∑

i

Si, (2)

with

Si = −Trρred,i log2 ρred,i (3)

the i-site von Neumann entropy of the reduced density ma-

trix ρred,i. The von Neumann entropy is considered as one

of the definitive measures of entanglement for a pure bipartite

system. By dividing the system into sites and moving to a site-

occupation basis the reduced density matrix ρred,i becomes a

4 × 4 diagonal matrix [21, 22],

ρred,i = diag [Pi(↑↓), Pi(↑), Pi(↓), Pi(0)] (4)

with Pi(γ) the probability of double (γ =↑↓), single (γ =↑ or

↓), or zero (γ = 0) electronic occupation at site i [19].

We calculate the ground-state wave-function, for an even

numberM of wells, and from that obtain the occupation prob-

abilities. We calculate the probability that both electrons are

in the same left-most (M th) well as

PM (↑↓) =

∫ b

−rc

∫ b

−rc

|ψ(x1, x2)|
2dx1dx2, (5)

where rc is the (numerical) integration cut-off point and b =
−(M/2−1)(w+d) the mid point between the left-most well

and the next well.

The probability that only one spin up (or spin down by sym-

metry) electron is in this well is

PM (↑) = PM (↓) =

∫ b

−rc

∫ rc

b

|ψ(x1, x2)|
2dx1dx2. (6)

PM (0) may then be deduced, as the probabilities sum to 1.

For the other wells the occupation probabilities are

Pj+M/2(↑↓) =

∫ b

a

∫ b

a

|ψ(x1, x2)|
2dx1dx2, (7)

and

Pj+M/2(↑) =

∫ b

a

∫ a

−rc

|ψ(x1, x2)|
2dx1dx2 (8)

+

∫ b

a

∫ rc

b

|ψ(x1, x2)|
2dx1dx2, (9)

with a = −j(w + d) and b = −j(w + d) + d + w,

1 ≤ j ≤ (M/2 − 1). As we only consider an even number

of wells distributed symmetrically about the origin, the prob-

ability values for wells M/2 to 1 are known by symmetry.

III. COMPARISON WITH THE HUBBARD MODEL

The Hubbard model [11] is described by the Hamiltonian

HHM = −t
∑

i,σ

(

c†i,σci+1,σ + c†i+1,σci,σ

)

+Ũ
∑

i

n̂i,↑n̂i,↓, (10)

where i runs over the M sites and σ =↑, ↓. Here t is the hop-

ping parameter and Ũ is the interaction strength. c†i,σ (ci,σ)

creates (destroys) a particle of spin σ at site i while n̂i,σ =

c†i,σci,σ is the particle number operator. We solve Eq. (10)

by exact diagonalization in the single-site occupation basis

{|↑↓〉 , |↑〉 , |↓〉 , |0〉}. We apply open boundary conditions and

consider an average particle density of n = n↓ + n↑ = 2/M ,

with nσ the average density of the σ-spin component. Again

we calculate the average single-site entanglement Eq. (2) [17–

19]. Usually the hopping parameter t is used to rescale Ũ ,

giving the dimensionless interaction strength U = Ũ/t.
To compare results, we need to calculate the equivalent of t

and Ũ for the QW system discussed in Sec. II. In the Hubbard
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model the hopping parameter is the expectation value of the

single-particle operators in the Hamiltonian with respect to

the single-particle wave functions localized at adjacent sites.

When the hopping parameter t is independent of the sites it

may be written as

t = 〈φi(r)|

(

−
1

2
∇2 + V (r)

)

|φi+1(r)〉 , (11)

where φi is the wavefunction at any site i and V (r) is the

single-particle confining potential.

Following this definition, we estimate the hopping parame-

ter for our quantum well model as

tw = 〈φL(x)|

(

−
1

2

d2

dx2
+ v(x)

)

|φR(x)〉 , (12)

where φL(R) has the shape of the single-particle ground state

of the finite single square well potential φw , but centered in

the left (φL) or right (φR) well. Here v(x) is the potential de-

fined in Eq. (1), with the zero of energy chosen such that v(x)
has zero as its lowest value thereby ensuring that the potential

contribution is always positive and an increase in the depth of

the well causes the hopping parameter to decrease. The phase

of φL and φR is chosen to make tw real and positive.

The on-site interaction in the Hubbard model [11] is defined

by

Ũ =
1

2
〈φi(r2)| 〈φi(r1)|

1

|r1 − r2|
|φi(r1)〉 |φi(r2)〉 . (13)

The corresponding parameter in our 1D model with a delta

function interaction is then

Ũw =
CU

2

∫

φ4
w(x)dx. (14)

We may now estimate U for our model as

U ≈
Ũw

tw
. (15)

For systems of wells characterized by the parameters w = d =
2 a0, where a0 is the (effective) Bohr radius, and v0 = 10 (ef-

fective) Hartree, we find U = 12344CU ; when the interwell

distance is reduced to d = 0.2 a0 we obtainU = 3.14CU , and

U = 1.27CU for the limiting case d = 0.

A. Effect of many-body interactions on the electronic density

Next we explore how the electron density alters to maxi-

mize its exposure to the attractive confining potential whilst

attempting to minimize the interaction between the electrons.

For two wells the density profile is clearly symmetric so we

do not discuss it further. A non-interacting four well system

(upper panel of Fig. 1, dashed line) displays a density clearly

higher in the inner wells. However for U = 40, due to the

electron repulsion, the difference between the electron den-

sity in the inner and outer wells becomes much smaller (solid

−
1

0
D

en
si

ty
  
(a

  
  
)

−
1

0
D

en
si

ty
  
(a

  
  
)

x  (a   )0

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
−15 −10 −5  0  5  15

 0.35

 0.3

 0.25

 0.2

 0.15

 0.1

 0.05

 0
 15 10 5 0−5−10−15−20

U=40
U=0

U=40

U=0

 10

 20

FIG. 1: Upper Panel: electron density for U = 0 (CU = 0) (dashed

line) and U = 40 (CU = 0.00324) (solid line) for a 4 well potential

and w = 2 a0, d = 2 a0 and v0 = 10 Hartree. Lower Panel: as for

the upper panel but for a system of 8 wells.

line). For eight wells and U = 0 the inner wells are again

preferentially occupied while there is very little density in the

outermost wells (Fig. 1, lower panel, dashed line). When the

interaction is ‘switched on’ to U = 40 the two central wells

have a lower peak density than the nearby wells to compen-

sate for the Coulomb repulsion, but the outermost wells still

display, by comparison, a much lower density. Similar behav-

iors of the interacting and non-interacting densities are found

when the distance between wells is reduced by an order of

magnitude (d = 0.2 a0). However in this case the density is

considerably different from zero in the barrier region (Fig. 2).

These results seemingly show that, apart from accidental

compensation, the electron density in the different wells can

not be made equal by applying an unmodulated Coulomb in-

teraction.

B. Comparison of entanglement results

In Fig. 3 we compare the average single-site entanglement

for the Hubbard model with that of the QW electron systems

characterized by d = 2, d = 0.2, and the limiting case d = 0.

The latter corresponds to the arbitrary partition of a single well

of width Mw into M equal regions.

For d = 2 a0 and two wells (upper panel) we see that the

entanglement decreases similarly to the Hubbard model as U
increases but the entanglement in the QW system is slightly

higher. When we consider four wells (middle panel), in both

cases the entanglement increases up to a maximum and then

decreases, the maximum occurring at slightly different values

of U . For eight wells (lower panel) the entanglement in the
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FIG. 2: Upper panel: electron density for U = 0 (CU = 0) (dashed

line) and U = 40 (CU = 12.75) (solid line) for a 4 well potential

with w = 2 a0, d = 0.2 a0 and v0 = 10 Hartree. Lower Panel: as

for the upper panel but for a system of 8 wells.

two systems is almost indistinguishable.

For d = 0.2 a0, two wells, and U . 8 the Hubbard model

is fairly accurate in reproducing the average single-site en-

tanglement, while, for stronger interactions, results from the

Hubbard model reproduce only the qualitative trend (Fig.3,

upper panel). For U & 8 the entanglement values are interme-

diate between the Hubbard model and the limiting case d = 0:

in this respect we note that for d = 0.2 a0 even when the re-

pulsive interaction is as high as U = 40 (CU = 12.75) the

electron density in the QW system does not become localized

within the wells (see Fig. 2).

When four wells are considered, the Hubbard model repro-

duces the entanglement trend qualitatively and is less accurate

when the interaction is low (Fig. 3, middle panel). The max-

imum entanglement is lower for d = 0.2 a0 and in general

the entanglement trend is intermediate between the Hubbard

model and the limiting case d = 0. For four wells the differ-

ence between the maximum values of the entanglement can

not be removed by rescaling U (see discussion in next sec-

tion).

For eight wells the Hubbard model reproduces the qualita-

tive behavior but the entanglement is lower at all values of U
and intermediate with respect to the results for d = 0.

It should be noted however that, even for d = 0.2 a0, the

percentage error for the entanglement as estimated using the

Hubbard model will be relatively small for the eight and four

well systems (∼ 1%), while more substantial for the two-well

case and U & 8 (∼ 20%).

Our results show that the average single-site entanglement

of the Hubbard model is a very good match for the entangle-
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FIG. 3: Average single-site entanglement for the Hubbard model and

the QW electron system with U = Ũw/tw, w = 2 a0, d = 2 a0,

d = 0.2 a0 or d = 0, and v0 = 10 Hartree. Upper panel: 2 sites

with n = 1 a−1

0
and 2 wells. Center panel: 4 sites with n = 0.5 a−1

0

and 4 wells. Lower panel: 8 sites with n = 0.25 a−1

0
and 8 wells.

ment of a QW electron system when wells are far enough apart

to prevent significant electron density in the interwell barrier

region (see Fig. 1); it is less good, although it gives the gen-

eral trend, when the wells become closer, as the density profile

displays less well-defined ‘sites’ (see Fig. 2) . Surprisingly

though, when considering a large number of wells, the Hub-

bard model reproduces the entanglement within few percent at

all interaction strengths, even when compared to the limiting

case scenario d = 0 (Fig.3, lower panel). This results sug-

gests that here the Hubbard model sites could be interpreted

as a fine enough mesh discretization of the continuous spatial

variable.

C. Rescaling Ũw/tw

We now investigate whether, for d = 2 a0, the small dis-

crepancy between the Hubbard model and the QW system re-

sults for the entanglement may be removed by choosing an

‘ad hoc’ value of Ũw/(twCU ).

We find that with Ũw/ (CU tw) = 11500 the entanglement
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for the QW system is almost identical to the results from the

Hubbard model for all the systems considered (Fig. 4).

U
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and the QW electron system with U = 11500CU , w = 2 a0, d = 2
a0, and v0 = 10 Hartree. Upper Panel: 2 sites with n = 1 a−1

0
and

2 wells. Center Panel: 4 sites with n = 0.5 a−1

0
and 4 wells. Lower

panel: 8 sites with n = 0.25 a−1

0
and 8 wells.

This suggests that although the calculated Ũw/tw gives a

good estimate for the parameter U to be used in the Hub-

bard model, we may improve the entanglement accuracy by

fitting Ũw/(CU tw) and thereby compensate for some of the

differences between the models. The extent of the scaling

confirms that—at least for parameters for which there is no

significant electron density in the barrier regions—the use of

a single square well wave-function is a good approximation

in the calculation of Ũw/tw as the result is very close to the

scaled value.

IV. UPPER BOUND FOR THE ENTANGLEMENT AND
STRONG COULOMB INTERACTION LIMIT

Let us consider the case of zero magnetization, i.e. P (↑) =
P (↓) and 2N particles where N is an integer. With M wells,

we then have a constraint from conserving the particle number

φ =

M
∑

i

(Pi(↑↓) + Pi(↑)) −N = 0, (16)

and constraints from the requirement that occupation proba-

bilities for any well/site must sum to one

ψi = Pi(↑↓) + 2Pi(↑) + Pi(0) − 1 = 0. (17)

We use Lagrange multipliers to maximize S subject to these

constraints, i.e.

∂

∂Pi(γ)



S − λφ−
M
∑

j

µjψj



 = 0 (18)

with γ =↑, ↑↓, 0. Eliminating λ and µi from the resulting

equations give

Pi(↑↓)Pi(0) = (Pi(↑))
2. (19)

Eq. (19) relates occupation probabilities within each site, so

we can find a local maximum of the entanglement where

all the wells/sites are equivalent, i.e. Pi(γ) = P (γ). Im-

posing this condition on Eqs. (16), (17) and (19) gives

P (↑) = N/M − (N/M)
2

and P (↑↓) = (N/M)
2
. We note

that it is only the ratio N/M that matters for the probabilities

and hence the entanglement. For 2 particles, the largest entan-

glement occurs for two well/sites (Fig. 3); this suggests that

N/M = 1/2 (half-filling) may be the condition to obtain the

largest maximum for the entanglement.

We now continue with N = 1 and note that

P (↑) = 1/M − 1/M2 and P (↑↓) = 1/M2 correspond to the

condition of no preferred well and two uncorrelated particles

of opposite spin.

Reduced density matrices with eigenvalues equal to 1/g,

g the number of degrees of freedom, would correspond to

maximal entanglement. However, under the stipulation of

preserving the particle number together with the request that
∑

γ Pi(γ) = 1, this state cannot be achieved except for

M = 2. We could think of moving closer to this by attempt-

ing to achieve reduced density matrices with more homogene-

ity within the eigenvalues, i.e., achieving Pi(γ) ≈ Pi(γ
′), at

least within certain wells. We implement this by relaxing the

condition that the wells are equivalent and moving part of the

particle density from one site to another. We reduce Pi(↑) and

Pi(↓) by q while increasing Pj(↑↓) at site j 6= i by q, with

the empty occupation probabilities adjusted accordingly. Set-

ting dS/dq = 0 gives q = 0 suggesting that the maximum

entanglement occurs when all wells are equivalent.

Under this condition, the average single-site entanglement

is given by Eq. (3), and simplifies to

S th
max(M) = 2 log2(M) + 2

(

1

M
− 1

)

log2 (M − 1) . (20)

This maximum average single-site entanglement decreases as

the number of wells increase (see Table I) and, for two parti-

cles, S th
max

M→∞
→ 0. In the Hubbard model picture, this would
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M Sth
max Smax

2 2 2

4 1.623 1.550

6 1.300 1.234

8 1.087 1.033

TABLE I: Table showing the maximum theoretical average single-

site entanglement Eq. (20), and the maximum entanglement as calcu-

lated for the QW electron system for d = 2 a0 and different numbers

of wells.

correspond to the limit of the number of sites going to infin-

ity and the average particle density going to zero. This limit

would in fact be expected to have no entanglement as it is es-

sentially a product state of empty occupations.

For d = 2 a0, S th
max is reached for U = 0 and two wells,

similarly to the Hubbard model; however, for M > 2, some

interaction is required to balance the propensity of the non-

interacting wave-function to favor inner wells. Turning on the

repulsion between electrons will tend to reduce the discrep-

ancies between the electron density peaks in different wells

(see e.g. the upper panel of Fig. 1); however this will also

tend to decrease the double occupation probability and in par-

ticular the already too low value of P1(M)(↑↓) at the outer

wells. Therefore, due to the open boundary conditions here

considered, it may not be possible for the system to reach the

theoretical maximum for the entanglement by simply varying

U , as a perfect balance between occupation probabilities in

different wells may not be achieved without, for example, a

spatial modulation of the particle-particle interaction.

d (a0) P1(↑) P2(↑) P th
max(↑)

0.2 0.157 0.277 0.1875

2 0.164 0.265 0.1875

d (a0) P1(↑↓) P2(↑↓) P th
max(↑↓)

0.2 5.62 × 10−3 0.0595 0.0625

2 8.58 × 10−3 0.0626 0.0625

d (a0) P1(0) P2(0) P th
max(0)

0.2 0.681 0.386 0.5625

2 0.663 0.408 0.5625

TABLE II: Occupation probabilities for M = 4, interwell distances

d = 0.2 a0 and d = 2 a0, and interaction value USmax
correspond-

ing to the entanglement maximum. Theoretical values as used in

Eq. (20)

In Table II we compare the occupation probabilities

P th
max(γ) corresponding to the maximum theoretical entangle-

ment S th
max to the occupation probabilities calculated for the

maximum value of the entanglement for the M = 4 system

and interwell distances d = 2 and d = 0.2. We note that the

largest discrepancy with the theoretical values is observed for

the double occupation probability, with P1(↑↓) ≪ P th
max(↑↓).

This is greatly responsible for the fact that Smax < S th
max for

both interwell distances. The d = 0.2 system also presents

the largest discrepancies |Pi(γ)−P th
max(γ)| for any γ and i, as

M Sth
U→∞ SU=40 SU=450

2 1 1.030 1.000

4 1.5 1.503 1.500

6 1.252 1.226 1.226

8 1.061 1.032 1.032

TABLE III: Table showing the limiting value for the average single-

site entanglement entropy Eq. (21), and the results from the QW elec-

tron system with U = 40 and U = 450 for d = 2 a0 and different

numbers of wells.

well as a large inhomogeneity between well occupation prob-

abilities |P1(γ)−P2(γ)| for any γ. These account for the fact

that this system presents a lower maximum for the entangle-

ment in respect to the system with d = 2 a0.

We may calculate the theoretical limit for the entanglement

of two electrons and M wells when U → ∞ and all wells are

equally favorable. Using a similar procedure to section IV but

with P (↑↓) = 0 and P (↑) = P (↓) = 1/M , we obtain

S th
U→∞ =

2

M
log2(M) +

(

2

M
− 1

)

log2

(

1 −
2

M

)

. (21)

We see in Table III that Eq. (21) describes the large U limit

of the QW system fairly well, with a percentage error of at

most 3%. For M = 6 and M = 8 the entanglement of the

QW system saturates at U ≈ 40 and remains slightly below

the theoretical limiting value as in this case the assumption of

equivalent wells does not hold even for very strong interac-

tions (Fig. 1, lower panel).

d (a0) P1(↑) P2(↑) P th(↑)

0 0.196 0.284 0.25

0.2 0.228 0.268 0.25

2 0.249 0.251 0.25

Hubbard 0.249 0.251 0.25

d (a0) P1(↑↓) P2(↑↓) P th(↑↓)

0 2.04 × 10−4 1.81 × 10−2 0

0.2 2.12 × 10−4 3.46 × 10−3 0

2 6.80 × 10−7 5.87 × 10−6 0

Hubbard 4.94 × 10−7 4.43 × 10−6 0

d (a0) P1(0) P2(0) P th(0)

0 0.608 0.414 0.5

0.2 0.544 0.461 0.5

2 0.501 0.499 0.5

Hubbard 0.501 0.499 0.5

TABLE IV: Occupation probabilities for M = 4, interwell distances

d = 0, d = 0.2 a0 and d = 2 a0, and U = 450. The correspond-

ing values for the Hubbard model are reported as well. Theoretical

values as used for Eq. 21.

In Table IV we explore the differences between the theo-
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retical limiting results and the M = 4 system. We consider

d = 0, d = 0.2 a0, d = 2 a0, and the results from the Hub-

bard model. Table IV shows that the occupation probabilities

for d = 2 a0 are almost identical to the Hubbard model and

extremely close to the theoretical limiting values. For d = 0.2
instead, no matter how strong the Coulomb repulsion between

particles is made (U = 450 in the table), the very narrow in-

terwell barriers fail to counteract the effect of the boundary

conditions, which favor occupation in the central wells. In

general the inhomogeneity between well occupation probabil-

ities |P1(γ) − P2(γ)| increases for decreasing d, underlining

the fact that the definition of ’sites’ become more arbitrary.

However the substantially larger double occupancy probabil-

ity encountered for d < 2 increases the available degrees of

freedom and hence the entanglement. This confirms the en-

tanglement trend observed in Fig. 3, center panel.

V. ATTRACTIVE VERSUS REPULSIVE
PARTICLE-PARTICLE INTERACTION

We wish to discuss how the entanglement pattern is modi-

fied when we compare attractive (CU , U < 0) with repulsive

particle-particle interaction. In the following we will consider

the QW system with d = 2 a0 and the Hubbard model. In

Fig. 5 we show the change in the average single-site entan-

glement with U for different numbers of wells. From our

calculations Smax always occurs for U ≥ 0 and corresponds

to U = 0 for two, U = 2.1 for four, while U = 4.8 for

eight wells. As expected from Eq. (20), the maximum aver-

age single-site entanglement Smax decreases with increasing

number of wells and our conjectured theoretical maximum

entanglement S th
max is indeed an upper bound, to which the

actual system comes reasonably close (Table I). For M > 2,

due to the non-periodic nature of the system, an unmodulated

interaction strength drives the system towards having equiv-

alent wells only in the very large |U | limit. However, as

particle-particle interaction would naturally introduce corre-

lations, any spatial modulation of U should probably be non

trivial in order to mimic the uncorrelated electrons’ occupa-

tion probabilities corresponding to the maximum theoretical

entanglement Eq. (20).

For U < 0 the entanglement decreases monotonically for

increasing |U |. This is due to a disproportionate increase of

the double occupation probabilities, which are favored by the

attractive interparticle interaction. This limits the access to

other degrees of freedom which might contribute to the entan-

glement, and consequently the entanglement is reduced.

Our calculations show that the Hubbard model reproduces

well the average single-site entanglement of a QW system

with relatively wide interwell barriers. The comparison for

M = 4 is shown in Fig. 5.

A. Large inter-particle attraction limit

For U << 0 the two center wells could have equal proba-

bilities of double occupation and emptiness whilst all the other

U
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FIG. 5: Average single-site entanglement of the 4-sites Hubbard

model and of the QW system with 2, 4, and 8 wells vs U , U =
Ũw/tw, d = 2 a0, w = 2 a0, and v0 = 10 Hartree.

M Sth,1

U<<0
Sth,2

U<<0
SU=−40

2 1 1 1.030

4 0.5 0.811 0.706

6 0.333 0.65 0.585

8 0.25 0.544 0.497

TABLE V: Table showing the theoretical limits for the average

single-site entanglement and U ≪ 0 for different numbers of wells.

Results from the QW system with d = 2 a0 and U = −40 are

presented as well.

wells would be empty. This would lead to an average single-

site entanglement of

S th,1
U<<0 = 2/M. (22)

We see in Table V that the QW system does not get very close

to this limit except for M = 2. The form of the confining po-

tential is such that all the wells will always contain some den-

sity for the finite interaction strengths considered (U ≥ −40).

At these interaction strengths the system is better described

by assuming that all wells are equivalent but that there is no

single occupation. This gives

S th,2
U<<0 =

1

M
log2 (M)−

(

1 −
1

M

)

log2

(

1 −
1

M

)

. (23)

Fig. 5 shows that the entanglement remains intermediate be-

tween S th,1
U<<0 and S th,2

U<<0, due to the relatively limited effect

of the short-range interaction considered.

VI. SPATIAL VERSUS AVERAGE SINGLE-SITE
ENTANGLEMENT

In this section we consider a different type of entangle-

ment contained within the QW system, the spatial entangle-

ment between the two trapped particles. This represents the

particle-particle entanglement spanning from the many-body

wave-function spatial degrees of freedom. Once more we cal-

culate the entanglement using the von Neumann entropy of
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the reduced density matrix, Ssp = −Trρred,sp log2 ρred,sp, with

ρred,sp calculated from the spatial degrees of freedom as [23]

ρred,sp(x1, x2) =

∫

Ψ∗(x1, x3)Ψ(x2, x3)dx3. (24)

This expression is diagonalized with respect to the basis set

employed. Also in this case we allow for attractive as well as

repulsive interaction between the particles.

Notice that in the present case the spatial entanglement is

zero when there is no interaction as the wave-function fac-

torizes into spatial and spin components and the implicit cor-

relations arising from the Pauli exclusion principle—and the

related entanglement—are accounted for within the spin de-

grees of freedom.

For two wells (Fig. 6, upper panel) we see that the spatial

entanglement is a mirror image of the site entanglement when

reflected along the line S, Ssp = 1. For larger numbers of

wells the relationship is more complicated. In most regions

when the spatial entanglement increases the site entanglement

decreases and vice versa; however the spatial entanglement

does not have a minimum exactly where the average single-

site entanglement has a maximum. This is because the spatial

entanglement’s minimum always occurs at U = 0 when there

is no correlation between the particles’ positions.

An intuitive explanation for the almost opposite behavior of

these two types of entanglement is that for U > 0 increasing

U increases the repulsion and the correlation between parti-

cles. Hence one electron’s position reveals more about the

other electron while the number of spatial degrees of free-

dom is not dramatically limited, so the spatial entanglement

increases. However the probability of double occupation is

reduced by a large positive interaction so less is learned by

measurement with respect to wells/sites even though the elec-

tron affects the other’s position more. Therefore the site en-

tanglement decreases once it has reached its maximum but,

forM > 2, much less strongly than the spatial entanglement’s

increase.

For U < 0 the reduction in the probability of single occu-

pation causes the average single-site entanglement to decrease

markedly when |U | increases. The increase in spatial entan-

glement with increasing |U | here comes from the system ap-

proaching the situation where measurement of one electron’s

position reveals the other electron to be in the same region.

This results in large entanglement and we find that the spa-

tial entanglement for U < 0 increases as the number of wells

where the electron can be found increases.

VII. CONCLUSION

In this paper we examined the average single-site and spa-

tial entanglement of two particles confined in a string of quan-

tum wells and interacting via a contact interaction. The re-

sults for average single-site entanglement were compared to

those of the one-dimensional Hubbard model with on-site in-

teraction, to investigate when this model is a good approxi-

mation to the two-particle system. For repulsive (Coulomb)

interaction, we found that the trend of the entanglement was
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FIG. 6: Average single-site entanglement S and spatial entanglement

Ssp for the QW electron system with U = Ũw/tw, d = 2 a0, w = 2
a0, v0 = 10 Hartree and 2 wells (upper panel), 4 wells (center panel),

and 8 wells (lower panel)

reproduced, with a generally good quantitative agreement,

when comparing with a Hubbard model characterized by U =
Ũw/tw where Ũw and tw were calculated from the quantum

well system. This was not entirely expected as even a contact

interaction still has contributions beyond on-site interaction

especially for relatively small but finite barrier widths. In the

latter case the Hubbard model reproduces at least the quali-

tative trend, with a maximum discrepancy of ∼ 20% for the

parameters considered. We have compared the results from

the Hubbard model also with the limiting case when no bar-

rier exists between sites and a single QW is arbitrarily divided

into M equal sectors, each sector corresponding to one ‘site’.

Surprisingly, when enough ‘wells’ are considered, the Hub-

bard model reproduces the entanglement within few percent.

We interpreted this as the Hubbard model sites being a fine

enough mesh discretization of the continuous spatial variable.

We conjectured a theoretical maximum value for the aver-

age single-site entanglement of two-particle trapped withinM
wells. We saw that the maximum value was not reached ex-

cept in the case of 2 wells. We argued that for M > 2 some

spatially modulated particle-particle interaction is needed to

reach the maximum average single-site entanglement as to
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counteract the propensity of the particles to occupy the inner

wells.

Despite the calculated values of Ũw and tw appearing to

give very good results for relatively wide interwell barriers,

we found that an even better match between the Hubbard

model and the electron system could be achieved by rescaling

the value of Ũw/(CU tw). This suggests that there were some

small contributions to the interaction beyond the on-site repul-

sion for the chosen well parameters, but that the main approxi-

mation used—hopping parameters and interaction strength in-

dependent of the site and estimated from the ground state of

a single finite quantum well—remains valid. However, as the

interwell barrier width decreases, these approximations fails

and no rescaling of Ũw/(CU tw) could improve the match be-

tween the quantum well system and the Hubbard model re-

sults.

We also considered an attractive interaction U < 0 and rel-

atively wide interwell barriers. In this case the average single-

site entanglement of the quantum well system was well ap-

proximated by the Hubbard model.

Finally we have considered a different type of

entanglement—the spatial entanglement—for the quantum

well system. Our results showed that the spatial entanglement

tends to display in most parameter regions an opposite trend

in respect to the average single-site entanglement.

Future work includes considering long range Coulomb in-

teractions, and how this affects comparison with the results

from the Hubbard model.
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