260 research outputs found
Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species
We propose a hypothesis for digestive constraints on the browsing and grazing options available to ruminants: that the diet-niche range (maximum and minimum grass intake) of a species is dependent upon its predisposition to stratified rumen contents, based on observations that this characteristic is a critical step towards enhanced fibre digestion and greater fluid throughput. We compare a physiological (heterogeneity of ingesta fluid content) and an anatomical (the intraruminal papillation pattern) measure with dietary evidence for a range of African and temperate species. Both measures are strongly related to the mean percentage of grass in species’ natural diets, as well as to the maximum and minimum levels of grass intake, respectively. The nature of these effects implies a stratification-level threshold, below which a species will not use a grass-based diet, but above which grass consumption can increase exponentially. However, above this threshold, a minimum percentage of grass in the diet is a prerequisite for optimal performance. We argue that this second constraint is crucial, as it depicts how a greater fluid throughput reduces potential for detoxification of plant secondary compounds, and therefore limits the maximum amount of browse a stratifying species will consume
Animal diets in the Waterberg based on stable isotopic composition of faeces
Faecal analysis of diet in free-ranging mammals can provide insight into local habitat conditions by reflecting the resources actually utilized. Here we used stable light isotope analysis of faeces to qualify, as well as quantify, certain aspects of mammal food selection in a recovering, nutrient-poor, savanna habitat in the Waterberg. Stable carbon isotope ratios in faeces reflect proportions of C3-foods (browse) to C4-foods (grass) consumed, whereas stable nitrogen isotope ratios reflect a combination of trophic behaviour, protein intake, and water and nutritional stress. Percentage nitrogen indicates the nutritional quality of the diet, at least in terms of crude protein intake. We used these data to reconstruct and compare the diets of various mammal species from two reserves in the Waterberg: the Welgevonden Private Game Reserve and Zoetfontein Private Game Farm
The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally-varying insolation. Five idealised experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high-latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state-dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven orbital seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate
Snout Shape in Extant Ruminants
Copyright: © 2014 Tennant, MacLeod. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article
Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene
The past 5 million years mark a global change from the warmer, more stable climate of the Pliocene to the initiation of glacial-interglacial cycles during the Pleistocene. Marine core sediment records located off the coast of southwestern Africa indicate aridification and intensified upwelling in the Benguela Current over the Pliocene and Pleistocene. However, few terrestrial records document environmental change in southwestern Africa over this time interval. Here we synthesize new and published carbon and oxygen isotope data of the teeth from large mammals (>6 kg) at Langebaanweg (~5 million years ago, Ma), Elandsfontein (1.0 – 0.6 Ma), and Hoedjiespunt (0.35 – 0.20 Ma), to evaluate environmental change in southwestern Africa between the Pliocene and Pleistocene. The majority of browsing and grazing herbivores from these sites yield enamel 13 C values within the range expected for animals with a pure C3 diet, however some taxa have enamel 13C values that suggest the presence of small amounts C4 grasses at times during the Pleistocene. Considering that significant amounts of C4 grasses require a warm growing season, these results indicate that the winter rainfall zone, characteristic of the region today, could have been in place for the past 5 million years. The average 18O value of the herbivore teeth increases ~4.4‰ between Langebaanweg and Elandsfontein for all taxa except suids. This increase may solely be a function of a change in hydrology between the fluvial system at Langebaanweg and the spring-fed environments at Elandsfontein, or a combination of factors that include depositional context, regional circulation and global climate. However, an increase in regional aridity or global cooling between the early Pliocene and mid-Pleistocene cannot explain the entire increase in enamel 18O values. Spring-fed environments like those at Elandsfontein may have 75 provided critical resources for mammalian fauna in the mid-Pleistocene within an increasingly arid southwestern Africa ecosystem
Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection
Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system
New technologies and firm organization : the case of electronic traceability systems in French agribusiness
This paper considers the relationship between the adoption of electronic traceability systems (ETSs) and the organization of firms. More precisely, it analyzes the respective roles of a firm's organizational structure, and organizational changes, in the process of ETS adoption in agribusiness. We use data from the French "Organizational Changes and Computerization" survey from 2006. We test a probit model to demonstrate the organizational structure and organizational changes underlying the firm's ETS adoption choice. Results show that ETS adoption is strongly favored by organizations with heavy hierarchical structures, standardized managerial practices and contractual mechanisms with external partners. This adoption process seems to coevolve with the organization: firms that implemented an ETS during the observed period (2003-2006) have experienced the most important organizational changes in terms of managerial practices, information systems and contractual relations, as well as the strengthening of the intermediate levels in the hierarchy
Seasonal and habitat effects on the nutritional properties of savanna vegetation: Potential implications for early hominin dietary ecology
The African savannas that many early hominins occupied likely experienced stark seasonality and contained mosaic habitats (i.e., combinations of woodlands, wetlands, grasslands, etc.). Most would agree that the bulk of dietary calories obtained by taxa such as Australopithecus and Paranthropus came from the consumption of vegetation growing across these landscapes. It is also likely that many early hominins were selective feeders that consumed particular plants/plant parts (e.g., leaves, fruit, storage organs) depending on the habitat and season within which they were foraging. Thus, improving our understanding of how the nutritional properties of potential hominin plant foods growing in modern African savanna ecosystems respond to season and vary by habitat will improve our ability to model early hominin dietary behavior. Here, we present nutritional analyses (crude protein and acid detergent fiber) of plants growing in eastern and southern African savanna habitats across both wet and dry seasons. We find that many assumptions about savanna vegetation are warranted. For instance, plants growing in our woodland habitats have higher average protein/fiber ratios than those growing in our wetland and grassland transects. However, we find that the effects of season and habitat are complex, an example being the unexpectedly higher protein levels we observe in the grasses and sedges growing in our Amboseli wetlands during the dry season. Also, we find significant differences between the vegetation growing in our eastern and southern African field sites, particularly among plants using the C4 photosynthetic pathway. This may have implications for the differences we see between the stable carbon isotope compositions and dental microwear patterns of eastern and southern African Paranthropus species, despite their shared, highly derived craniodental anatomy.Horizon 2020(H2020)ERC-Stg 677576Bioarchaeolog
Grass leaves as potential hominin dietary resources
Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C4 component in the diets of most taxa, and grass leaves are the single most abundant C4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource.Horizon 2020(H2020)ERC-STG 677576Bioarchaeolog
Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins
The diet of early human ancestors has received renewed theoretical interest since the discovery of elevated d13C values in the enamel of Australopithecus africanus and Paranthropus robustus. As a result, the hominin diet is hypothesized to have included C4 grass or the tissues of animals which themselves consumed C4 grass. On mechanical grounds, such a diet is incompatible with the dental morphology and dental microwear of early hominins. Most inferences, particularly for Paranthropus, favor a diet of hard or mechanically resistant foods. This discrepancy has invigorated the longstanding hypothesis that hominins consumed plant underground storage organs (USOs). Plant USOs are attractive candidate foods because many bulbous grasses and cormous sedges use C4 photosynthesis. Yet mechanical data for USOs—or any putative hominin food—are scarcely known. To fill this empirical void we measured the mechanical properties of USOs from 98 plant species from across sub-Saharan Africa. We found that rhizomes were the most resistant to deformation and fracture, followed by tubers, corms, and bulbs. An important result of this study is that corms exhibited low toughness values (mean = 265.0 J m-2) and relatively high Young’s modulus values (mean = 4.9 MPa). This combination of properties fits many descriptions of the hominin diet as consisting of hard-brittle objects. When compared to corms, bulbs are tougher (mean = 325.0 J m-2) and less stiff (mean = 2.5 MPa). Again, this combination of traits resembles dietary inferences, especially for Australopithecus, which is predicted to have consumed soft-tough foods. Lastly, we observed the roasting behavior of Hadza hunter-gatherers and measured the effects of roasting on the toughness on undomesticated tubers. Our results support assumptions that roasting lessens the work of mastication, and, by inference, the cost of digestion. Together these findings provide the first mechanical basis for discussing the adaptive advantages of roasting tubers and the plausibility of USOs in the diet of early hominins
- …
