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Abstract 17 

The general observation that carnivores ingest highly digestible diets and have simple short 18 

guts and small abdominal cavities intuitively results in the assumption that carnivores or 19 

predators carry less digesta in their gut compared to herbivores. Due to logistic constraints, 20 

this assumption has not been tested quantitatively so far.  In this contribution, we estimated 21 

the dry matter gut contents (DMC) for 25 Carnivora species (including two herbivorous ones, 22 

the pandas) using the physical ‘Occupancy Principle’, based on a literature data collection on 23 

dry matter intake (DMI), apparent dry matter digestibility (aD DM) and retention time (RT), 24 

and compared the results to an existing collection for herbivores. Scaling exponents with 25 

body mass (BM) for both carnivores and herbivores were in the same range with DMI ~ 26 

BM0.75; aD DM ~ BM0; RT ~ BM0.11 and DMC ~ BM0.88. The trophic level (carnivore vs 27 

herbivore) significantly affected all digestive physiology parameters except for RT. 28 

Numerically, the carnivore DMI level reached 77%, the RT 32% and DMC only 29% of the 29 

corresponding herbivore values, whereas the herbivore aD DM only reached 82% of that of 30 

carnivores. Thus, we quantitatively show that carnivores carry less inert mass or gut content 31 

compared to herbivores, which putatively benefits predators in predator-prey interactions and 32 

might have contributed to the evolution towards a passive limb support apparatus in 33 

herbivores. As expected, the two panda species appeared as outliers in the dataset with low 34 

aD DM and RT for a herbivore but extremely high DMI values, resulting in DMC in the 35 

lower part of the herbivore range. Whereas the difference in DMI and DMC scaling in 36 

herbivores might allow larger herbivores to compensate for lower diet quality by ingesting 37 

more, this difference may allow larger carnivores not to go for less digestible prey parts, but 38 

mainly to increase meal intervals, i.e. not having to hunt on a daily basis. 39 
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Introduction 45 

The natural diets of carnivores are more digestible than those of herbivores. A variety of 46 

observations have been explained with this fact, including that carnivores putatively have 47 

shorter digestive tracts of lower capacity and lesser complexity (Chivers and Hladik 1980; 48 

Stevens and Hume 1998; Langer and Clauss 2018; McGrosky et al. 2019a; McGrosky et al. 49 

2019b), and therefore also have abdominal cavities of lesser capacity than herbivores (Clauss 50 

et al. 2017). One important consequence should be that in predator-prey interactions, prey 51 

species have more inert mass to move in proportion to their muscle mass. 52 

The difference in body composition, with respect to the contribution of gastrointestinal 53 

contents to overall body mass has, to our knowledge, rarely been investigated quantitatively. 54 

In relation to species differences with respect to the pharmacokinetic distribution of drugs, 55 

Davis et al. (1975) compared the body composition of domestic goats (Capra aegagrus 56 

hircus) and dogs (Canis lupus familiaris), whose total gut contents represented 13.9 % and 57 

0.7 % of their body mass, respectively; when compared on the basis of gut-contents-free 58 

body mass, few differences between the species remained. In particular, muscle and bone 59 

mass, which were less in goats when total body mass was used as the basis for comparison, 60 

did no longer differ. 61 

However, to our knowledge, data on gut contents in carnivores is scarce. In terrestrial 62 

vertebrate herbivores, ample information about the contribution of gut contents to overall 63 

body mass exist, measured in animals taken from the wild, by dissection (reviewed in Clauss 64 

et al. 2007; Clauss et al. 2013). By contrast, similar data is not available for carnivores, most 65 

likely for two reasons. (i) Killing free-ranging carnivores for study purposes is socially less 66 

accepted than killing herbivores. (ii) Herbivores more or less feed continuously, and therefore 67 

have a constant gut fill; even if fluctuations between seasons or even between hours of the 68 

day have been reported (Owen-Smith 1994; Barboza et al. 2006; Weckerly 2010), gut 69 



contents are always present in relevant and measurable amounts. In carnivores, however, gut 70 

contents may differ dramatically with time since the last meal. Because some carnivores may 71 

have to feed repeatedly throughout the day, but some may have a period of fasting after a 72 

gorging day (De Cuyper et al. 2019), measuring the gut contents of carnivores killed in the 73 

wild may not appear as a promising research strategy. 74 

One way to estimate gut contents in live animals without killing and dissecting them is to 75 

use, based on physical principles, information on food intake, digestibility, and digesta 76 

retention from feeding experiments (Blaxter et al. 1956). This method was refined by 77 

Holleman and White (1989), based on the ‘Stewart-Hamilton Principle’ or ‘Occupancy 78 

Principle’ (Steele 1971; Shipley and Clark 1972). They provided equations for the calculation 79 

(additionally explained and discussed in detail by  Müller et al. 2013). This approach was 80 

validated in sheep (Munn et al. 2015), and was used in a large number of intra-specific and 81 

inter-specific studies of herbivores (e.g., Baker and Hobbs 1987; Gross et al. 1996; Franz et 82 

al. 2011; Fritz et al. 2012; Munn et al. 2012; Müller et al. 2013). Even though the principle is 83 

applicable to any organism, it has not been used so far to estimate the gut contents of 84 

carnivores.  85 

Therefore, the aim of the present study was to collate data on food intake, digestibility 86 

and digesta retention in mammalian terrestrial carnivores, to compare these measures, as well 87 

as the derived estimated gut fill, to an existing collection on herbivores (Müller et al. 2013). 88 

Given the general understanding of herbivory and carnivory, our prediction was that 89 

carnivore data would display a generally lower food intake, higher digestibility, shorter 90 

digesta retention, and lower gut fill than herbivores. 91 

 92 

Methods 93 



For herbivores, the data collection on food intake, digestibility and digesta retention and the 94 

derived gut fill from Müller et al. (2013) was used. For carnivores, a similar data collection 95 

was collated. Because many studies with carnivores report data in a less consistent manner 96 

than studies in herbivores, and with data on body mass, food intake, digestibility and digesta 97 

retention often not given in the same publication, the following estimations were made. Body 98 

mass was taken from the publication itself if given. When not given, body mass was taken 99 

from the data collection of Wilman et al. (2014), or, for dog breeds, from a related 100 

publication of the same research group that performed the digestion study. Digesta retention 101 

was generally reported as the transit time (TT; time till first marker appearance) or the mean 102 

retention time (MRT; calculated by various methods). If both measures were provided, MRT 103 

was used. Marker excretion patterns in carnivorous species often consist of a single major 104 

peak rather than the more gradually increasing and decreasing marker excretion pattern in 105 

herbivores (Fig. 1), and therefore, using TT and MRT interchangeably was considered 106 

permissible.  107 

If intake and digestibility were not provided but only MRT or TT, publications were 108 

nevertheless considered if the nutrient composition of the diet used was either given, or could 109 

be assumed using its description in the publication and standard nutrient composition feed 110 

tables (Supplement 1). For carnivores, diet digestibility can be estimated by standard 111 

equations from diet nutrient composition (NRC 2006), with no relevant differences between 112 

mammalian carnivore species (Clauss et al. 2010). Using the same approach, the 113 

metabolisable energy (ME) content of the diet was estimated as the basis for the intake 114 

estimation. The maintenance requirement (MER) of a specimen for which intake was not 115 

measured directly (only for dogs, bears, raccoon and cats in this dataset) was calculated based 116 

on the equation from NRC (2006), which yields an estimate in MER. The intake was then 117 

estimated as the amount of diet (with the estimated ME content) needed to meet that 118 



requirement. The equations used for estimation are given in Table 1. The data collection, 119 

including references and indications which estimation steps were made, is given as Table 2. 120 

The full set of data (i.e. not the species averages but each data point) is available as a 121 

supplement (Supplement 2). 122 

Data were analysed to establish scaling relationships for dry matter intake (DMI), 123 

retention time (RT, a mix of TT and MRT in the case of carnivores), apparent digestibility of 124 

dry matter (aD DM) and the dry matter gut contents (DMC) with body mass as y = a BMb, 125 

with 95% confidence intervals for parameter estimates, using log-transformed data and linear 126 

regression analysis. The relationship of RT with relative DMI (per unit metabolic body 127 

weight, kg0.75) was analyzed in the same manner, due to the overarching effect of food intake 128 

on digesta retention (Levey and Martínez del Rio 1999). These analyses were all performed 129 

for herbivores and carnivores separately, and for both groups combined. An additional set of 130 

analyses assessed, in the combined dataset, the effect of trophic level (carnivore/herbivore). 131 

These models were first run with the interaction term. Because this was always non-132 

significant, they were repeated without, and only those results are reported here. The two 133 

panda species were ascribed to the herbivore trophic niche, but displayed separately in graphs 134 

due to their phylogenetic membership in the Carnivora. 135 

To account for any phylogenetic influence on these allometries, we performed analyses 136 

in Generalized Least Squares (GLS) and Phylogenetic Generalized Least Squares (PGLS), 137 

using a mammalian supertree (Fritz et al. 2009), pruned to include the relevant taxa in our 138 

dataset. The tree was then correlated with our dataset in PGLS, and strength of the 139 

phylogenetic signal (λ) estimated by maximum likelihood (this was not possible in the scaling 140 

model for carnivore retention times, where λ was therefore manually set to 1; in our 141 

experience, this occurs, albeit rarely, in software package used). All analyses were carried out 142 

in R v 3.3.2 (R_Core_Team 2015), with the package ‘nlme’ (Pinheiro et al. 2011) for GLS 143 



and the package ‘caper’ (Orme et al. 2013) for PGLS analyses. The significance level was set 144 

to 0.05. 145 

 146 

Results 147 

We collated data for 25 species of Carnivora, including the two herbivorous panda species 148 

(Table 2). The allometric regression analyses mostly had a significant phylogenetic signal, 149 

and while the scaling exponent did not change in magnitude between GLS and PGLS for the 150 

dry matter intake or the digestibility, it decreased in magnitude from GLS to PGLS for 151 

retention time and gut contents (Table 3). The scaling exponents (‘slopes’) hardly differed 152 

between carnivores and herbivores, leading to parallel patterns (Fig. 2A-D), and were roughly 153 

BM0.75 for intake, BM0.11 for retention time, BM0 (no scaling) for digestibility, and BM0.88 for 154 

dry matter gut contents. The scaling factors (‘intercepts’) for herbivores and carnivores 155 

overlapped for food intake (with a numerical difference of carnivores consuming 77% of the 156 

intake level of herbivores), retention time (with carnivores having 32% of the retention time 157 

of herbivores), digestibility (with herbivores achieving only 82% of that of carnivores), and 158 

also for gut contents in PGLS (with carnivores having 29% of the gut contents of herbivores) 159 

(Table 3).  160 

The pandas appeared as particular outliers in the dataset. Their food intake level was 161 

higher than that of any other animals for their respective body size (Fig. 2A), and the 162 

digestibility values they achieved were not only the lowest of all Carnivora, but among the 163 

lowest ones in the herbivores (Fig. 2C). 164 

In carnivores, there was no significant relationship between retention time and the 165 

relative food intake, whereas that relationship was significantly negative in the herbivores, 166 

and it was also significant for the combined dataset (but only in PGLS; Table 3; Fig. 2E). 167 



In the combined dataset, when adding trophic level as a cofactor, it was significant in the 168 

case of food intake, digestibility and gut content in both GLS and PGLS (Table 4), most 169 

likely because trophic level and phylogeny did not reflect the same patterns in these cases 170 

(with pandas resembling other herbivores more than other Carnivora). For models including 171 

retention time, however, trophic level was only significant in GLS but not in PGLS (Table 4), 172 

most likely because retention time is conservative within taxa, as for example the pandas 173 

resemble other Carnivora. 174 

 175 

Discussion 176 

We provide quantitative evidence for the common sense assumption that carnivores carry 177 

less contents in their digestive tracts than herbivores. By means of a distinct example: a 1.6 178 

kg Japanese marten (Martes melampus) has on average a dry matter gut fill of 0.26% of body 179 

mass, compared to a 1.2 kg rufous hare-wallaby (Lagorchestes hirsutus) that has on average  180 

a dry matter gut fill of 3.18% of BM. This carnivore-herbivore gut fill discrepancy appears 181 

logical given the morphological and physiological adaptations associated with carnivory - 182 

shorter and simpler gastrointestinal tracts (Chivers and Hladik 1980; Langer and Clauss 2018; 183 

McGrosky et al. 2019a) and smaller abdominal cavities (Clauss et al. 2017), typically 184 

explained by the assumption of higher diet digestibility and a lesser need for prolonged 185 

retention times (Sibly 1981; Hume 1989). 186 

All investigated factors were different between the trophic levels in both GLS and PGLS 187 

(Table 4), suggesting convergent patterns across the herbivores from different clades 188 

(including the Carnivora). The only exception were retention times measures, which only 189 

differed between the trophic groups in GLS but not in PGLS (Table 4), most likely due to the 190 

general uniformity of this measure within clades, with the herbivorous Carnivora – the pandas 191 

– having retention times as short as those of carnivorous Carnivora. However, even though a 192 



significant difference was detected for these measurements of digestive physiology, there was 193 

always overlap in the 95% confidence intervals of the intercept of the models between 194 

herbivores and carnivores (Table 3), and the differences between the trophic groups were less 195 

pronounced than expected. Given the difference in wet gut contents between dog and goat 196 

cited in the Introduction (Davis et al. 1975), we would have expected that gut fill in 197 

carnivores is rather of a magnitude of 0.5-1 % of that of herbivores rather than the 20-30 % 198 

found in the present study. 199 

This might be due to several constraints of our dataset. Our data originated from 200 

controlled feeding experiments, and are not uniform with respect to the kind of diets used.  201 

The herbivore dataset, for example, contains complete pelleted diets, mixtures of roughages 202 

and concentrates, and pure roughage diets; in herbivores, additions of concentrates may 203 

decrease intake compared to a more natural diet. Similarly, for the carnivore collection, 204 

commercial petfoods or whole prey diets are included. It is therefore difficult to judge to what 205 

degree the dataset reflects a putative difference that would arise if only natural diets were 206 

used. 207 

Possibly more importantly, however, is a constraint in the dataset that relates directly to 208 

the focus of our study: We must assume that the body mass data for herbivores includes an 209 

(unknown) proportion of wet gut contents. If one would express herbivore body mass on an 210 

estimated gut contents-free basis, subtracting roughly 10% of raw body mass data, the 211 

herbivore regression lines in Fig. 2A-D would all shift horizontally to the left, and differences 212 

to carnivores would be increased. As for the less than expected RT difference between 213 

herbivores and carnivores, it should be noted that this may be due to the common observation 214 

that carnivores can retain their faeces and time defecations behaviourally to a greater extent 215 

than most herbivores, which defecate more regularly. This difference is also evident in the 216 

significant effect of relative food intake on retention time in the herbivores and its absence in 217 



carnivores (Fig. 2E), again suggesting that carnivores can afford to uncouple defecation from 218 

other digestive processes to a higher degree. One interesting observation on carnivore 219 

retention times is that carnivore groups with shorter retention times (<10 h) were typically 220 

from the mustelid family (e.g. Neovison vison; Mustela putorius; Martes melampus; Arctitis 221 

binturong; Lontra Canadensis; Pteronura brasiliensis), the procyonid family (Potos flavus) 222 

and ursid family (Ailurus fulgens; Ailuropoda melanoleuca; Ursus arctos; Ursus americanus) 223 

– all groups  whose digestive tract does not comprise a caecum (McGrosky et al. 2016). 224 

Another limitation of our study is that due to our method of calculating dry matter gut 225 

fill, putative additional differences arising from differences in the moisture content of the 226 

digesta remain ignored. If we assumed that in herbivores, there is often more moisture in the 227 

fermentation chambers (e.g. due to frequent occurrence of digesta washing (Müller et al. 228 

2011)), the difference demonstrated here is a conservative view at the gut fill difference 229 

between herbivores and carnivores. The contribution of digestive fluids to total GIT wet 230 

weight is most likely substantial. For example, in a study comparing domestic pigs on a low 231 

or a high fibre diet, Jensen and Jørgensen (1994) documented that wet total GIT contents 232 

were 3.6 and 10.7 % of body mass (with the high-fibre diet evidently approaching the 233 

mammalian herbivore average (Müller et al. 2013)); when expressed as dry matter gut fill, 234 

these values reduced to 0.7 and 1.2% of body mass. Most notably, the overall difference in 235 

digesta dry matter concentration was very large, at 23.4% in the low fibre diet and 14.3% in 236 

the high fibre diet (Jensen and Jørgensen 1994). We are not aware of comprehensive 237 

comparative studies on the dry matter content of the gastrointestinal contents across 238 

mammals. Compiled data from the literature (Table 5) suggests that on the one hand, larger 239 

herbivores have more fluid digesta than smaller herbivores, as already suggested by Müller et 240 

al. (2013). On the other hand, the only carnivore data – for domestic dogs – supports the 241 



notion that the digesta dry matter concentration might differ between larger carnivores and 242 

herbivores. 243 

Traditional approaches to herbivore ecology emphasize the discrepancy in the scaling of 244 

intake (in the present study: at BM0.76 in GLS) and that of gut capacity (in the present study 245 

measured as DMC: at BM0.93 in GLS, with linear scaling not included in the 95% confidence 246 

interval). This has traditionally been interpreted as causing longer retention times in larger 247 

herbivores, where more gut capacity is available per unit intake, due to the presumed 248 

discrepancy in scaling. Larger animals do not achieve a higher digestibility due to increased 249 

retention times (this study; Steuer et al. 2013; Steuer et al. 2014), but likely use the additional 250 

gut capacity to increase intake to compensate for the lower digestibility of their lower-quality 251 

diet (reviewed in Clauss et al. 2013; Müller et al. 2013). As in the very similar dataset of 252 

Müller et al. (2013), the scaling of retention time (BMd) corresponded to the scaling of gut 253 

capacity (BMa), intake (BMb) and digestibility (BMc) at d = a – b + c in both GLS and PGLS. 254 

In carnivores, the same relationship held in GLS but not in PGLS, because the scaling of 255 

retention time could not be assessed with λ determined by maximum likelihood in this case 256 

(Table 3).  In carnivores, the discrepancy between the scaling of intake (at BM0.77 in GLS) 257 

and capacity (at BM0.98  in GLS) is typically not interpreted as facilitating the intake of lower 258 

quality diets in larger species, but in a reduced kill frequency, where species above a certain 259 

body size threshold theoretically can eat only every second day if hunting their average prey 260 

(De Cuyper et al. 2019). 261 

Such a difference between gorge and fasting days would reduce differences in gut fill of 262 

large carnivores to herbivores on gorge days, where wolves (Canis lupus), for example, may 263 

consume up to 22% of their own body mass (Stahler et al. 2006). On the other hand, this 264 

would even increase the difference in gut fill between large carnivores and herbivores on the 265 

carnivore’s fasting day preceding their next hunt, giving them a physical advantage over their 266 



large prey. A constant food intake, on which the calculations of the present study are based, is 267 

more representative for another group of carnivores such as wild cats (Felis silvestris) with 268 

frequent meals throughout the day (Bradshaw 2006); arguably, the large discrepancy between 269 

the body size of these species and their small prey makes the physical advantage of an empty 270 

gastrointestinal tract less necessary. 271 

The panda species (greater panda Ailuropoda melanoleuca; red panda Ailurus fulgens), 272 

two herbivorous Carnivora feeding mainly on bamboo, appear as outliers in the data 273 

collection, which is not unexpected. In spite of their strictly herbivorous diets, pandas show a 274 

variety of features typically not associated with herbivory, including simple digestive tracts 275 

and a microbiome not geared towards fibre fermentation (reviewed in Sponheimer et al. 276 

2019). Greater pandas feeding on bamboo only show a dry matter digestibility of less than 277 

20%, and compensate with a high dry matter intake (up to 6% BM), with a total gut clearance 278 

in less than 12 hours (Dierenfeld et al. 1982). As such they do not fit the typical carnivore 279 

profile of high digestibility, low food intake, short retention time and low gut contents but 280 

rather an ‘in between group’ between carnivores and herbivores, with very short retention 281 

times, very low digestibilities, high food intakes and intermediate gut loads. How pandas can 282 

maintain their dietary niche remains speculative. It has been suggested that this is linked to 283 

the very high abrasiveness of bamboo on composite teeth of typical herbivores (Martin et al. 284 

2019) but especially the low digestibility of bamboo in fermentation systems (Xi et al. 2007), 285 

which make typical herbivores less competitive on bamboo than on other plant diets 286 

(Sponheimer et al. 2019). This scenario matches the observation that over evolutionary time, 287 

the diet niche of pandas has narrowed from a more varied to their current bamboo-only diet 288 

(Han et al. 2019). 289 

The final conclusion of this contribution is that terrestrial carnivorous mammals indeed 290 

carry quantitatively less content in their gut than do herbivorous mammals. As suggested 291 



before, in the light of predator-prey interactions, this implies that the predator has less inert 292 

mass to move in proportion to muscle mass. Although predators have higher muscle fibre 293 

power than their prey, the lower amount of inert gut contents will also contribute their greater 294 

capacities for acceleration and deceleration (Wilson et al. 2018). The inert digesta mass may 295 

also have been one (of many) contributing selective pressures for the evolution of cost-296 

efficient locomotion with unguligradism and energy-storing tendon systems in larger 297 

herbivores (McHorse et al. 2019).  298 
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Table 1 Estimation equations for metabolisable energy (ME) in diets, dry matter digestibility 445 
(aD DM) of diets and maintenance energy requirements (MER) of carnivores 446 

Parameter Estimating equation(s) Reference 

Metabolisable energy (ME)a 

 

 

 

 

 

1. GE (kcal) = (5.7 x g CP) + (9.4 x g EE) + [4.1 x (g NfE + g CF)]b 

2. Percentage aE = 91.2 – (1.43 x percentage CF on DM base)c 

3. DE (kcal) = (GE x (percentage aE/100))d 

4. ME (kcal) = DE – (1.04 x g CP) 

NRC (2006) 

Dry matter digestibility (aD DM)e Percentage aE = 91.2 – (1.43 x percentage CF on DM base) 

Or 

Percentage aE = 96.6 – (0.95 x percentage TDF on DM base)f 

NRC (2006) 

Maintenance energy requirement (MER) Laboratory kennel dogs or active pet dogs 130 kcal/kg BW0.75g 

Young adult laboratory dogs or active pet dogsh 140 kcal/kg BW0.75 

Lean domestic cats 100 kcal/kg BW0.67 

NRC (2006) 

a ME equation for processed food; b GE = gross energy, CP = crude protein, EE = ether extract or crude fat, NfE = nitrogen 447 
free extract, CF = crude fibre; c aE = energy digestibility, DM = dry matter; d DE = digestible energy; e Percentage energy 448 
digestibility was used as an approximation for dry matter digestibility; f This equation was used when total dietary fibre 449 
(TDF) values were given but no CF values were present, the latter was preferred over estimating the CF content; g BW = 450 
bodyweight; h This equation was used when ‘young adult’ was explicitly mentioned   451 



 452 
 453 

Table 2 The average body mass, dry matter (DM) intake, dry matter digestibility (aD DM), retention time (RT) and dry matter gut content 454 
(DMC) per carnivore species including indications of estimated parameters 455 

Species N° of 

studies 

BM 

(kg) 

N° of BM 

estimated 

N° of 

nutrient 

composition 

estimateda 

DM 

intake 

(kg) 

N° of DM 

intake 

estimated 

aD DM 

(%) 

N° of  

aD DM 

estimated 

RT 

(h) 

DMC 

(kg) 

References 

Acinonyx jubatus 1 32.17 0/1 1/1 0.77 0/1 94.05 1/1 25.34 0.430 Leemans et al. (2015) 

Ailuropoda melanoleuca 2 102.24 0/2 0/2 3.89 0/2 47.13 0/2 8.25 1.028 Mainka et al. (1989) 

Ailurus fulgens 1 5.13 0/1 1/1 0.56 0/1 33.70 0/1 3.96 0.082 Wei et al. (1999) 

Arctictis binturong 1 18.90 0/1 1/1 0.13 0/1 73.88 1/1 6.50 0.023 Lambert et al. (2014) 

Canis familiaris 12 17.28 3/12 5/12 0.32 7/12 85.67 7/12 27.28 0.208 Clemens and Stevens (1980); Burrows et al. (1982);  

Fahey et al. (1990a); Fahey et al. (1990b); Fahey et 

al. (1992); Lefebvre et al. (2001); Rolfe et al. 

(2002); Hernot et al. (2005); Childs-Sanford and 

Angel (2006); Boillat et al. (2010a); Boillat et al. 

(2010b);  

De Cuyper et al. (2018) 

Caracal caracal  1 8.25 0/1 0/1 0.13 0/1 72.19 0/1 24.00 0.082 Edwards et al. (2001) 

Chrysocyon brachyurus 1 25.80 0/1 0/1 0.55 0/1 65.70 0/1 14.15 0.217 Sanford and Angel (2006) 

Felis catus 2 3.93 0/2 1/2 0.06 1/2 73.03 1/2 23.78 0.040 Peachey et al. (2000); Loureiro et al. (2017) 



Leopardus pardalis 1 11.90 1/1 1/1 0.19 0/1 87.91 1/1 34.00 0.148 Vásquez-Vargas and Brenes-Soto (2015) 

Leopardus wiedii 1 3.25 1/1 1/1 0.11 0/1 87.91 1/1 34.00 0.086 Vásquez-Vargas and Brenes-Soto (2015) 

Lontra canadensis 3 8.32 2/3 1/3 0.25 1/3 90.00 3/3 4.89 0.027 Davis et al. (1992); Ormseth and Ben-David 

(2000);  

White et al. (2007) 

Martes melampus 1 1.60 0/1 1/1 0.03 0/1 82.42 1/1 5.52 0.004 Tsuji et al. (2015) 

Mustela putorius  1 1.36 0/1 0/1 0.06 0/1 88.05 1/1 3.03 0.004 Bleavins and Aulerich (1981) 

Neovison vison 2 1.08 0/2 0/2 0.02 0/2 70.25 0/2 2.32 0.001 Sibbald et al. (1962); Bleavins and Aulerich (1981)  

Panthera onca 1 100.00 1/1 1/1 0.49 0/1 87.91 1/1 43.00 0.496 Vásquez-Vargas and Brenes-Soto (2015) 

Potos flavus 1 4.25 0/1 1/1 0.08 0/1 73.74 1/1 2.50 0.005 Lambert et al. (2014) 

Prionailurus bengalensis  1 5.88 0/1 0/1 0.09 0/1 70.15 0/1 35.00 0.087 Edwards et al. (2001) 

Procyon lotor 1 5.52 1/1 1/1 0.16 1/1 69.18 1/1 11.00 0.047 Clemens and Stevens (1980) 

Pseudalopex culpaeus 1 5.24 0/1 0/1 0.21 0/1 57.80 0/1 19.67 0.111 Silva et al. (2005) 

Pteronura brasiliensis 1 15.33 0/1 1/1 0.70 0/1 87.84 1/1 3.13 0.052 Carter et al. (1999) 

Tremarctos ornatus 1 140.00 1/1 1/1 2.24 0/1 60.50 0/1 16.00 1.042 Goldman et al. (2001) 

Ursus americanus 1 46.95 0/1 0/1 0.66 0/1 69.35 0/1 9.90 0.160 Pritchard and Robbins (1990) 

Ursus arctos 2 135.21 1/2 1/2 1.14 0/2 74.91 1/2 10.08 0.291 Pritchard and Robbins (1990); Elfström et al. 

(2013)  

Ursus maritimus 1 350.00 0/1 0/1 1.90 0/1 82.24 0/1 20.28 0.890 Best (1985) 

Ursus thibetanus 1 65.00 0/1 1/1 0.98 1/1 71.56 1/1 18.12 0.473 Koike et al. (2010) 

a If nutrient composition is estimated and DM intake and aD DM are not, it means that the DM% was estimated to calculate DM intake from fresh matter intake; N° = number, DM = dry matter, 456 
aD DM = dry matter digestibility, RT = retention time, DMC = dry matter gut contents 457 
  458 



Table 3 Scaling relationships according to y = a xb in mammalian terrestrial carnivore (n=23) and herbivore (n=82) species, for the body mass 459 

scaling of dry matter intake (DMI, in kg/d), digesta retention (RT, in h), apparent dry matter digestibility (aD DM, in %) and dry matter gut 460 

contents (DMC, in kg dry matter), and the scaling relationship of RT with the relative DMI (per unit metabolic body weight, kg0.75). Analyses 461 

performed in Generalized Least Squares (GLS) and Phylogenetically Generalized Least Squares (PGLS). 462 

  Carnivores  Herbivores  Carnivores & Herbivores 

Model Stat λ a b  λ a b  λ a b 

DMI ~ BM 

GLS - 
0.034 

(0.023;0.050) 

0.75 

(0.63;0.88) 
 - 

0.047 

(0.041;0.053) 

0.77 

(0.73;0.80) 
 - 

0.043 

(0.038;0.043) 

0.76 

(0.73;0.80) 

PGLS 0.10 
0.034 

(0.022;0.051) 

0.75 

(0.62;0.88) 
 0.86*** 

0.044 

(0.026;0.074) 

0.76 

(0.72;0.81) 
 0.83*** 

0.041 

(0.023;0.074) 

0.76 

(0.71;0.81) 

             

RT ~ BM 

GLS - 
6.7 

(3.3;13.5) 

0.23 

(0.00;0.46) 
 - 

21.3 

(17.9;25.4) 

0.15 

(0.11;0.20) 
 - 

17.2 

(14.0;21.1) 

0.16 

(0.10;0.21) 

PGLS 0.89*** 
8.1 

(3.5;18.9) 

0.14 

(-0.04;0.31) 
 0.99** 

25.6 

(9.7;68.0) 

0.11 

(0.04;0.17) 
 0.96*** 

25.8 

(10.1;65.5) 

0.11 

(0.05;0.17) 

             

aD DM ~ BM 

GLS - 
77 

(69;86) 

-0.00 

(-0.04;0.03) 
 - 

65 

(61;68) 

-0.02 

(-0.04;-0.01) 
 - 

68 

(64;71) 

-0.02 

(-0.04;-0.01) 

PGLS 0.04** 
77 

(68;86) 

-0.00 

(-0.04;0.04) 
 0.62*** 

63 

(52;76) 

-0.03 

(-0.05;-0.01) 
 0.62*** 

65 

(53;78) 

-0.03 

(-0.05;-0.01) 

             

DMC ~ BM 

GLS - 
0.006 

(0.003;0.012) 

0.98 

(0.73;1.23) 
 - 

0.028 

(0.024;0.032) 

0.93 

(0.89;0.96) 
 - 

0.020 

(0.016;0.025) 

0.93 

(0.87;0.99) 

PGLS (1) 
0.009 

(0.003;0.032) 

0.77 

(0.56;0.98) 
 0.71*** 

0.031 

(0.018;0.054) 

0.89 

(0.83;0.94) 
 0.94*** 

0.030 

(0.011;0.084) 

0.88 

(0.80;0.95) 

             

RT ~ rDMI 

GLS - 
26.4 

(1.3;532.3) 

-0.22 

(-1.06;0.63) 
 - 

488.3 

(122.8;1942.6) 

-0.71 

(-1.06;-0.36) 
 - 

73.1 

(17.9;299.8) 

-0.28 

(-0.64;0.09) 

PGLS 0.91* 
15.8 

(2.4;104.7) 

-0.09 

(-0.58;0.41) 
 0.96* 

181.8 

(43.8;754.4) 

-0.45 

(-0.74;-0.15) 
 0.97*** 

86.6 

(23.7;317.2) 

-0.25 

(-0.49;-0.02) 

* λ significantly different from 0, ** λ significantly different from 1, *** λ significantly different from 0 and 1;  463 
(1) λ set to 1 because the maximum likelihood method did not work in this case 464 
  465 



Table 4 Results of analyses for an effect of trophic level (tl) on scaling relationships according to log(y) = a + b log(x) + c (tl) in mammalian 466 

terrestrial carnivore (n=23, tl=1) and herbivore (n=82, tl=2) species, for the body mass scaling of dry matter intake (DMI, in kg/d), digesta 467 

retention (RT, in h), apparent dry matter digestibility (aD DM, in %) and dry matter gut contents (DMC, in kg dry matter), and the scaling 468 

relationship of RT with the relative DMI (per unit metabolic body weight, kg0.75). Analyses performed in Generalized Least Squares (GLS) and 469 

Phylogenetically Generalized Least Squares (PGLS). 470 

    Carnivores & Herbivores   

Model Stat   λ a b c p (c) 

DMI ~ BM 

GLS   - 
-1.634 

(-1.780;-1.469) 

0.76 

(0.73;0.80) 

0.151 

(0.063;0.240) 
0.001 

PGLS   0.81*** 
-2.081 

(-2.503;-2.087) 

0.76 

(0.71;0.80) 

0.365 

(0.179;0.550) 
<0.001 

         

RT ~ BM 

GLS   - 
0.497 

(0.244;0.751) 

0.16 

(0.11;0.21) 

0.412 

(0.277;0.548) 
<0.001 

PGLS   0.96*** 
1.409 

(0.718;2.100) 

0.11 

(0.05;0.17) 

0.001 

(-0.291;0.292) 
0.995 

         

aD DM ~ BM 

GLS   - 
2.013 

(1.945;2.081) 

-0.02 

(-0.04;-0.01) 

-0.102 

(-0.138;-0.066) 
<0.001 

PGLS   0.54*** 
2.098 

(1.953;2.243) 

-0.03 

(-0.04;-0.01) 

-0.152 

(-0.219;-0.085) 
<0.001 

         

DMC ~ BM 

GLS   - 
-2.803 

(-3.032;-2.575) 

0.93 

(0.89;0.98) 

0.621 

(0.499;0.743) 
<0.001 

PGLS   0.89*** 
-2.499 

(-3.171;-1.828) 

0.87 

(0.81;0.94) 

0.504 

(0.215;0.794) 
0.001 

         

         

RT ~ rDMI 

GLS   - 
1.505 

(0.964;2.046) 

-0.59 

(-0.92;-0.26) 

0.493 

(0.333;0.653) 
<0.001 

PGLS   0.97*** 
1.719 

(0.977;2.461) 

-0.29 

(-0.54;-0.04) 

0.142 

(-0.174;0.459) 
0.379 

* λ significantly different from 0, ** λ significantly different from 1, *** λ significantly different from 0 and 1;  471 
 472 
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Table 5 Literature data on the dry matter concentration of the total gastrointestinal contents wet mass in various species (mean ±SD) 474 

Species n Dry matter  

% wet mass 

Source 

Mouse 12 16.1 Cizek (1954) 

Hamster 12 19.0 Cizek (1954) 

Rat 24 20.2 Cizek (1954) 

Rat 3 21.4 ±1.2 Elsden et al. (1946) 

Guinea pig 12 16.3 Cizek (1954) 

Rabbit 5 17.8 ±4.6 Elsden et al. (1946) 

Rabbit 16 17.8 Cizek (1954) 

Dog 10 21.5 Cizek (1954) 

Pig 4 19.4 ±1.5 Elsden et al. (1946) 

Goat 1 19.0 Cizek (1954) 

Goat 14 16.9 ±1.9 data from Hatt et al. (2019) 

Sheep 4 12.2 ±3.9 Elsden et al. (1946) 

Sheep 21 14.1 ±1.2 data from Clauss et al. (2016) 

Red deer 1 13.5 Elsden et al. (1946) 

Cattle 2 12.9/16.1 Elsden et al. (1946) 

Horse 3 10.6 ±0.9 Elsden et al. (1946) 

 475 



A 

 

B 

 

Figure 1 Examples of small particle marker excretion curves in (A) a carnivore, the domestic 476 

dog (Canis lupus familiaris) from the study of De Cuyper et al. (2018; titanium oxide), and 477 

(B) a herbivore, the proboscis monkey (Nasalis larvatus), from Matsuda et al. (2015; 478 

chromium-mordanted fibre). Note the difference in defecation frequency and the 479 

corresponding shape of the marker excretion pattern.  480 
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 481 

Figure 2 Scaling relationships in herbivores and carnivores between (A) body mass and dry 482 

matter intake, (B) body mass and the retention time of the digesta, (C) body mass and the 483 

apparent digestibility of dry matter, (D) body mass and the estimated dry matter contents of 484 

the total gastrointestinal tract, (E) the relative dry matter intake and the digesta retention time. 485 

Solid regression lines – herbivores (all significant). Interrupted lines – significant carnivore 486 

regression lines, dotted lines – non-significant carnivore regression lines. All regression lines 487 
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represent PGLS results (see Table 3 for statistics). The grey dots indicate the two panda 488 

species (Ailurus fulgens, Ailuropoda melanoleuca) that are herbivorous yet phylogenetically 489 

linked to the other carnivores. 490 


