9,502 research outputs found
An examination of the accuracy of lattice and lattice square experiments on corn
This bulletin consists of an examination from the point of view of accuracy of the results of 93 lattice or lattice square designs used in corn varietal tests during the period 1938-40, inclusive. For the triple lattice designs at Iowa State College, three replications were on the average somewhat more accurate than five replications of the type of randomized blocks design previously used. Since part of this increase in accuracy was presumably due to the long and narrow shape of replication in the randomized blocks designs, somewhat smaller increases would be expected over a randomized blocks design with a more compact replication. For the lattice square designs, the increase in accuracy over randomized blocks represents a saving of about one replication in six with 25 varieties, one replication in five with 49 or 81 varieties and one replication in three with 121 varieties
Spitzer observations of the Hyades: Circumstellar debris disks at 625 Myr of age
We use the Spitzer Space Telescope to search for infrared excess at 24, 70,
and 160 micron due to debris disks around a sample of 45 FGK-type members of
the Hyades cluster. We supplement our observations with archival 24 and 70
micron Spitzer data of an additional 22 FGK-type and 11 A-type Hyades members
in order to provide robust statistics on the incidence of debris disks at 625
Myr of age an era corresponding to the late heavy bombardment in the Solar
System. We find that none of the 67 FGK-type stars in our sample show evidence
for a debris disk, while 2 out of the 11 A-type stars do so. This difference in
debris disk detection rate is likely to be due to a sensitivity bias in favor
of early-type stars. The fractional disk luminosity, L_dust/L*, of the disks
around the two A-type stars is ~4.0E-5, a level that is below the sensitivity
of our observations toward the FGK-type stars. However, our sensitivity limits
for FGK-type stars are able to exclude, at the 2-sigma level, frequencies
higher than 12% and 5% of disks with L_dust/L* > 1.0E-4 and L_dust/L* > 5.0E-4,
respectively. We also use our sensitivity limits and debris disk models to
constrain the maximum mass of dust, as a function of distance from the stars,
that could remain undetected around our targets.Comment: 33 pages, 11 figures, accepted by Ap
Failure mechanisms of graphene under tension
Recent experiments established pure graphene as the strongest material known
to mankind, further invigorating the question of how graphene fails. Using
density functional theory, we reveal the mechanisms of mechanical failure of
pure graphene under a generic state of tension. One failure mechanism is a
novel soft-mode phonon instability of the -mode, whereby the graphene
sheet undergoes a phase transition and is driven towards isolated benzene rings
resulting in a reduction of strength. The other is the usual elastic
instability corresponding to a maximum in the stress-strain curve. Our results
indicate that finite wave vector soft modes can be the key factor in limiting
the strength of monolayer materials
The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars
In 1992 we began a precision radial velocity (RV) survey for planets around
solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES
LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey
with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m
telescope, until 2007. The observations for 31 stars cover a time span of up to
15 years and the RV precision permit a search for Jupiter analogues. We perform
a joint analysis for variability, trends, periodicities, and Keplerian orbits
and compute detection limits. Moreover, the HARPS RVs are analysed for
correlations with activity indicators (CaII H&K and CCF shape). We achieve a
long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC,
1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This
enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A
steady RV trend for Eps Ind A can be explained by a planetary companion. On the
other hand, we find previously reported trends to be smaller for Beta Hyi and
not present for Alp Men. The candidate planet Eps Eri b was not detected
despite our better precision. Also the planet announced for HR 4523 cannot be
confirmed. Long-term trends in several of our stars are compatible with known
stellar companions. We provide a spectroscopic orbital solution for the binary
HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For
some other stars the variations could be attributed to stellar activity. The
occurrence of two Jupiter-mass planets in our sample is in line with the
estimate of 10% for the frequency of giant planets with periods smaller than 10
yr around solar-like stars. We have not detected a Jupiter analogue, while the
detections limits for circular orbits indicate at 5 AU a sensitivity for
minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.Comment: 63 pages, 24 figures (+33 online figures), 13 Tables, accepted for
publication in A&A (2012-11-13
Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets
The difference in formation process between binary stars and planetary
systems is reflected in their composition as well as their orbital
architecture, particularly orbital eccentricity as a function of orbital
period. It is suggested here that this difference can be used as an
observational criterion to distinguish between brown dwarfs and planets.
Application of the orbital criterion suggests that with three possible
exceptions, all of the recently-discovered substellar companions discovered to
date may be brown dwarfs and not planets. These criterion may be used as a
guide for interpretation of the nature of sub-stellar mass companions to stars
in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the
Astrophysical Journal Letter
The bends on a quantum waveguide and cross-products of Bessel functions
A detailed analysis of the wave-mode structure in a bend and its
incorporation into a stable algorithm for calculation of the scattering matrix
of the bend is presented. The calculations are based on the modal approach. The
stability and precision of the algorithm is numerically and analytically
analysed. The algorithm enables precise numerical calculations of scattering
across the bend. The reflection is a purely quantum phenomenon and is discussed
in more detail over a larger energy interval. The behaviour of the reflection
is explained partially by a one-dimensional scattering model and heuristic
calculations of the scattering matrix for narrow bends. In the same spirit we
explain the numerical results for the Wigner-Smith delay time in the bend.Comment: 34 pages, 21 figure
High-pressure study of X-ray diffuse scattering in ferroelectric perovskites
We present a high-pressure x-ray diffuse scattering study of the ABO
ferroelectric perovskites BaTiO_3 and KNbO_3. The well-known diffuse lines are
observed in all the phases studied. In KNbO_3, we show that the lines are
present up to 21.8 GPa, with constant width and a slightly decreasing
intensity. At variance, the intensity of the diffuse lines observed in the
cubic phase of BaTiO_3 linearly decreases to zero at GPa. These
results are discussed with respect to x-ray absorption measurements, which
leads to the conclusion that the diffuse lines are only observed when the B
atom is off the center of the oxygen tetrahedron. The role of such disorder on
the ferroelectric instability of perovskites is discussed.Comment: 4 pages, Accepted in PR
Crystal growth and quantum oscillations in the topological chiral semimetal CoSi
We survey the electrical transport properties of the single-crystalline,
topological chiral semimetal CoSi which was grown via different methods.
High-quality CoSi single crystals were found in the growth from tellurium
solution. The sample's high carrier mobility enables us to observe, for the
first time, quantum oscillations (QOs) in its thermoelectrical signals. Our
analysis of QOs reveals two spherical Fermi surfaces around the R point in the
Brillouin zone corner. The extracted Berry phases of these electron orbits are
consistent with the -2 chiral charge as reported in DFT calculations. Detailed
analysis on the QOs reveals that the spin-orbit coupling induced band-splitting
is less than 2 meV near the Fermi level, one order of magnitude smaller than
our DFT calculation result. We also report the phonon-drag induced large Nernst
effect in CoSi at intermediate temperatures
Confirmation of the Planet Hypothesis for the Long-period Radial Velocity Variations of Beta Geminorum
We present precise stellar radial velocity measurements for the K giant star
Beta Gem spanning over 25 years. These data show that the long period low
amplitude radial velocity variations found by Hatzes & Cochran (1993) are
long-lived and coherent. An examination of the Ca II K emission, spectral line
shapes from high resolution data (R = 210,000), and Hipparcos photometry show
no significant variations of these quantities with the RV period. These data
confirm the planetary companion hypothesis suggested by Hatzes & Cochran
(1993). An orbital solution assuming a stellar mass of 1.7 M_sun yields a
period, P = 589.6 days, a minimum mass of 2.3 M_Jupiter, and a semi-major axis,
and a = 1.6 AU. The orbit is nearly circular (e = 0.02). Beta Gem is the
seventh intermediate mass star shown to host a sub-stellar companion and
suggests that planet-formation around stars much more massive than the sun may
common.Comment: 10 pages, 9 figures, Astronomy and Astrophysics, in pres
- âŠ