4,534 research outputs found

    Melting glaciers: A probable source of DDT to the Antarctic marine ecosystem

    Get PDF
    Persistent organic pollutants reach polar regions by long-range atmospheric transport and biomagnify through the food web accumulating in higher trophic level predators. We analyzed Adelie penguin (Pygoscelis adeliae) samples collected from 2004 to 2006 to evaluate current levels of Sigma DDT (p,p\u27-DDT + p,p\u27-DDE) in these birds, which are confined to Antarctica. Ratios of p,p\u27-DDT to p,p\u27-DDE in Adelie penguins have declined significantly since 1964 indicating current exposure to old rather than new sources of Sigma DDT. However, Sigma DDT has not declined in Adelie penguins from the Western Antarctic Peninsula for more than 30 years and the presence of p,p\u27-DDT in these birds indicates that there is a current source of DDT to the Antarctic marine food web. DDT has been banned or severely restricted since peak use in the 1970s, implicating glacier meltwater as a likely source for DDT contamination in coastal Antarctic seas. Our estimates indicate that 1-4 kg.y(-1) Sigma DDT are currently being released into coastal waters along the Western Antarctic Ice Sheet due to glacier ablation

    The Southeast Indian Ridge between 88°E and 118°E: Variations in crustal accretion at constant spreading rate

    Get PDF
    The temperature of the mantle and the rate of melt production are parameters which play important roles in controlling the style of crustal accretion along mid-ocean ridges. To investigate the variability in crustal accretion that develops in response to variations in mantle temperature, we have conducted a geophysical investigation of the Southeast Indian Ridge (SEIR) between the Amsterdam hotspot and the Australian-Antarctic Discordance (88°E- 118°E). The spreading center deepens by 2100 m from west to east within the study area. Despite a uniform, intermediate spreading rate (69-75 mm yr- 1), the SEIR exhibits the range in axial morphology displayed by the East Pacific Rise and the Mid-Atlantic Ridge (MAR) and usually associated with variations in spreading rate. The spreading center is characterized by an axial high west of 102°45'E, whereas an axial valley is prevalent east of this longitude. Both the deepening of the ridge axis and the general evolution of axial morphology from an axial high to a rift valley are not uniform. A region of intermediate morphology separates axial highs and MAR-like rift valleys. Local transitions in axial morphology occur in three areas along the ridge axis. The increase in axial depth toward the Australian-Antarctic Discordance may be explained by the thinning of the oceanic crust by ~ 4 km and the change in axial topography. The long-wavelength changes observed along the SEIR can be attributed to a gradient in mantle temperature between regions influenced by the Amsterdam and Kerguelen hot spots and the Australian-Antarctic Discordance. However, local processes, perhaps associated with an heterogeneous mantle or along-axis asthenospheric flow, may give rise to local transitions in axial topography and depth anomalies

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work

    Self-assembly of Janus Dumbbell Nanocrystals and Their Enhanced 2 Surface Plasmon Resonance

    Get PDF
    Self-assembly is a critical process that can greatly expand the existing structures and lead to new functionality of nanoparticle systems. Multicomponent superstructures self-assembled from nanocrystals have shown promise as multifunctional materials for various applications. Despite recent progress in assembly of homogeneous nanocrystals, synthesis and self-assembly of Janus nanocrystals with contrasting surface chemistry remains a significant challenge. Herein, we designed a novel Janus nanocrystal platform to control the self-assembly of nanoparticles in aqueous solutions by balancing the hydrophobic and hydrophilic moieties. A series of superstructures have been assembled by systematically varying the Janus balance and assembly conditions. Janus Au–Fe3O4 dumbbell nanocrystals (\u3c20 nm) were synthesized with the hydrophobic ligands coated on the Au lobe and negatively charged hydrophilic ligands coated on the Fe3O4 lobe. We systematically fine-tune the lobe size ratio, surface coating, external conditions, and even additional growth of Au nanocrystal domains on the Au lobe of dumbbell nanoparticles (Au–Au–Fe3O4) to harvest self-assembly structures including clusters, chains, vesicles, and capsules. It was discovered that in all these assemblies the hydrophobic Au lobes preferred to stay together. In addition, these superstructures clearly demonstrated different levels of enhanced surface plasmon resonance that is directly correlated with the Au coupling in the assembly structure. The strong interparticle plasmonic coupling displayed a red-shift in surface plasmon resonance, with larger structures formed by Au–Au–Fe3O4 assembly extending into the near-infrared region. Self-assembly of Janus dumbbell nanocrystals can also be reversible under different pH values. The biphasic Janus dumbbell nanocrystals offer a platform for studying the novel interparticle coupling and open up opportunities in applications including sensing, disease diagnoses, and therapy

    Ferroelectricity induced by interatomic magnetic exchange interaction

    Full text link
    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[10]. Recently several remedies have been proposed, e.g., improper ferroelectricity induced by specific magnetic[6] or charge orders[2]. Guiding by these theories, currently most research is focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature, consequently far from the practical application. Simple collinear magnets, which can have high magnetic transition temperature, have never been considered seriously as the candidates for multiferroics. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic (AFM) insulator MnO, can display a magnetically induced ferroelectricity under a biaxial strain

    Damage in step-overs may enable large cascading earthquakes

    Get PDF
    Seismic hazard analysis relies on the ability to predict whether an earthquake will terminate at a fault tip or propagate onto adjacent faults, cascading into a larger, more devastating event. While ruptures are expected to arrest at fault discontinuities larger than 4–5 km, scientists are often puzzled by much larger rupture jumps. Here we show that material properties between faults significantly affect the ability to arrest propagating ruptures. Earthquake simulations accounting for fault step-over zones weakened by accumulated damage provide new insights into rupture propagation. Revealing that lowered rigidity and material interfaces promote rupture propagation, our models show for the first time that step-overs as wide as 10 km may not constitute effective earthquake barriers. Our results call for re-evaluation of seismic hazard analyses that predict rupture length and earthquake magnitude based on historic records and fault segmentation models

    Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling.

    Get PDF
    AIMS/HYPOTHESIS: Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic founder effect, and to study the mechanism of loss of function of the mutant receptor. METHODS: Biochemical profiling and DNA haplotype analysis of affected patients were performed. Insulin receptor expression in lymphoblastoid cells from a homozygous p.Ile119Met INSR patient, and in cells heterologously expressing the mutant receptor, was examined. Insulin binding, insulin-stimulated receptor autophosphorylation, and cooperativity and pH dependency of insulin dissociation were also assessed. RESULTS: All patients had biochemical profiles pathognomonic of insulin receptoropathy, while haplotype analysis revealed the putative shared region around the INSR mutant to be no larger than 28 kb. An increased insulin proreceptor to β subunit ratio was seen in patient-derived cells. Steady state insulin binding and insulin-stimulated autophosphorylation of the mutant receptor was normal; however it exhibited decreased insulin dissociation rates with preserved cooperativity, a difference accentuated at low pH. CONCLUSIONS/INTERPRETATION: The p.Ile119Met INSR appears to have arisen around the Horn of Africa, and should be sought first in severely insulin resistant patients with ancestry from this region. Despite collectively compelling genetic, clinical and biochemical evidence for its pathogenicity, loss of function in conventional in vitro assays is subtle, suggesting mildly impaired receptor recycling only
    • …
    corecore