336 research outputs found

    Early Trends in Cystatin C and Outcomes in Patients with Cirrhosis and Acute Kidney Injury

    Get PDF
    Background. Acute kidney injury (AKI) is a common and severe complication in patients with cirrhosis. Progression of AKI to a higher stage associates with increased mortality. Intervening early in AKI when renal dysfunction is worsening may improve outcomes. However, serum creatinine correlates poorly with glomerular filtration in patients with cirrhosis and fluctuations may mask progression early in the course of AKI. Cystatin C, a low-molecular-weight cysteine proteinase inhibitor, is a potentially more accurate marker of glomerular filtration. Methods. We conducted a prospective multicenter study in patients with cirrhosis comparing changes in cystatin and creatinine immediately following onset of AKI as predictors of a composite endpoint of dialysis or mortality. Results. Of 106 patients, 37 (35%) met the endpoint. Cystatin demonstrated less variability between samples than creatinine. Patients were stratified into four groups reflecting changes in creatinine and cystatin: both unchanged or decreased 38 (36%) (Scr−/CysC−); only cystatin increased 25 (24%) (Scr−/CysC+); only creatinine increased 15 (14%) (Scr+/CysC−); and both increased 28 (26%) (Scr+/CysC+). With Scr−/CysC− as the reference, in both instances where cystatin rose, Scr−/CysC+ and Scr+/CysC+, the primary outcome was significantly more frequent in multivariate analysis, and , respectively. However, when only creatinine rose, outcomes were similar to the reference group. Conclusions. Changes in cystatin levels early in AKI are more closely associated with eventual dialysis or mortality than creatinine and may allow more rapid identification of patients at risk for adverse outcomes

    Association between recurrence of acute kidney injury and mortality in intensive care unit patients with severe sepsis

    Get PDF
    Background: Acute kidney injury (AKI) occurs in more than half critically ill patients admitted in intensive care units (ICU) and increases the mortality risk. The main cause of AKI in ICU is sepsis. AKI severity and other related variables such as recurrence of AKI episodes may influence mortality risk. While AKI recurrence after hospital discharge has been recently related to an increased risk of mortality, little is known about the rate and consequences of AKI recurrence during the ICU stay. Our hypothesis is that AKI recurrence during ICU stay in septic patients may be associated to a higher mortality risk. Methods: We prospectively enrolled all (405) adult patients admitted to the ICU of our hospital with the diagnosis of severe sepsis/septic shock for a period of 30 months. Serum creatinine was measured daily. ?In-ICU AKI recurrence? was defined as a new spontaneous rise of ?0.3 mg/dl within 48 h from the lowest serum creatinine after the previous AKI episode. Results: Excluding 5 patients who suffered the AKI after the initial admission to ICU, 331 patients out of the 400 patients (82.8%) developed at least one AKI while they remained in the ICU. Among them, 79 (19.8%) developed ?2 AKI episodes. Excluding 69 patients without AKI, in-hospital (adjusted HR = 2.48, 95% CI 1.47?4.19), 90-day (adjusted HR = 2.54, 95% CI 1.55?4.16) and end of follow-up (adjusted HR = 1.97, 95% CI 1.36?2.84) mortality rates were significantly higher in patients with recurrent AKI, independently of sex, age, mechanical ventilation necessity, APACHE score, baseline estimated glomerular filtration rate, complete recovery and KDIGO stage. Conclusions: AKI recurred in about 20% of ICU patients after a first episode of sepsis-related AKI. This recurrence increases the mortality rate independently of sepsis severity and of the KDIGO stage of the initial AKI episode. ICU physicians must be aware of the risks related to AKI recurrence while multiple episodes of AKI should be highlighted in electronic medical records and included in the variables of clinical risk scores

    Acute and chronic kidney disease in elderly patients with hip fracture: prevalence, risk factors and outcome with development and validation of a risk prediction model for acute kidney injury

    Get PDF
    Background Hip fracture is a common injury in older people with a high rate of postoperative morbidity and mortality. This patient group is also at high risk of acute kidney injury (AKI) and chronic kidney disease (CKD), but little is known of the impact of kidney disease on outcome following hip fracture. Methods An observational cohort of consecutive patients with hip fracture in a large UK secondary care hospital. Predictive modelling of outcomes using development and validation datasets. Inclusion: all patients admitted with hip fracture with sufficient serum creatinine measurements to define acute kidney injury. Main outcome measures – development of acute kidney injury during admission; mortality (in hospital, 30-365 day and to follow-up); length of hospital stay. Results Data were available for 2848 / 2959 consecutive admissions from 2007-2011; 776 (27.2%) male. Acute kidney injury occurs in 24%; development of acute kidney injury is independently associated with male sex (OR 1.48 (1.21 to 1.80), premorbid chronic kidney disease stage 3B or worse (OR 1.52 (1.19 to 1.93)), age (OR 3.4 (2.29 to 5.2) for >85 years) and greater than one major co-morbidities (OR 1.61 (1.34 to 1.93)). Acute kidney injury of any stage is associated with an increased hazard of death, and increased length of stay (Acute kidney injury: 19.1 (IQR 13 to 31) days; no acute kidney injury 15 (11 to 23) days). A simplified predictive model containing Age, CKD stage (3B-5), two or more comorbidities, and male sex had an area under the ROC curve of 0.63 (0.60 to 0.67). Conclusions Acute kidney injury following hip fracture is common and associated with worse outcome and greater hospital length of stay. With the number of people experiencing hip fracture predicted to rise, recognition of risk factors and optimal perioperative management of acute kidney injury will become even more important

    Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial

    Get PDF
    Aims/hypothesis Higher plasma concentrations of tumour necrosis factor receptor (TNFR)-1, TNFR-2 and kidney injury molecule-1 (KIM-1) have been found to be associated with higher risk of kidney failure in individuals with type 2 diabetes in previous studies. Whether drugs can reduce these biomarkers is not well established. We measured these biomarkers in samples of the CANVAS study and examined the effect of the sodium–glucose cotransporter 2 inhibitor canagliflozin on these biomarkers and assessed whether the early change in these biomarkers predict cardiovascular and kidney outcomes in individuals with type 2 diabetes in the CANagliflozin cardioVascular Assessment Study (CANVAS). Methods Biomarkers were measured with immunoassays (proprietary multiplex assay performed by RenalytixAI, New York, NY, USA) at baseline and years 1, 3 and 6. Mixed-effects models for repeated measures assessed the effect of canagliflozin vs placebo on the biomarkers. Associations of baseline levels and the early change (baseline to year 1) for each biomarker with the kidney outcome were assessed using multivariable-adjusted Cox regression. Results In total, 3523/4330 (81.4%) of the CANVAS participants had available samples at baseline. Each doubling in baseline TNFR-1, TNFR-2 and KIM-1 was associated with a higher risk of kidney outcomes, with corresponding HRs of 3.7 (95% CI 2.3, 6.1; p < 0.01), 2.7 (95% CI 2.0, 3.6; p < 0.01) and 1.5 (95% CI 1.2, 1.8; p < 0.01), respectively. Canagliflozin reduced the level of the plasma biomarkers with differences in TNFR-1, TNFR-2 and KIM-1 between canagliflozin and placebo during follow-up of 2.8% (95% CI 3.4%, 1.3%; p < 0.01), 1.9% (95% CI 3.5%, 0.2%; p = 0.03) and 26.7% (95% CI 30.7%, 22.7%; p < 0.01), respectively. Within the canagliflozin treatment group, each 10% reduction in TNFR-1 and TNFR-2 at year 1 was associated with a lower risk of the kidney outcome (HR 0.8 [95% CI 0.7, 1.0; p = 0.02] and 0.9 [95% CI 0.9, 1.0; p < 0.01] respectively), independent of other patient characteristics. The baseline and 1 year change in biomarkers did not associate with cardiovascular or heart failure outcomes. Conclusions/interpretation Canagliflozin decreased KIM-1 and modestly reduced TNFR-1 and TNFR-2 compared with placebo in individuals with type 2 diabetes in CANVAS. Early decreases in TNFR-1 and TNFR-2 during canagliflozin treatment were independently associated with a lower risk of kidney disease progression, suggesting that TNFR-1 and TNFR-2 have the potential to be pharmacodynamic markers of response to canagliflozin

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Drug-Eluting Stents in Patients with Chronic Kidney Disease: A Prospective Registry Study

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) is strongly associated with adverse outcomes after percutaneous coronary intervention (PCI). There are limited data on the effectiveness of drug-eluting stents (DES) in patients with CKD. METHODOLOGY/PRINCIPAL FINDINGS: Of 3,752 consecutive patients enrolled in the Guthrie PCI Registry between 2001 and 2006, 436 patients with CKD - defined as a creatinine clearance <60 mL/min - were included in this study. Patients who received DES were compared to those who received bare metal stents (BMS). Patients were followed for a mean duration of 3 years after the index PCI to determine the prognostic impact of stent type. Study end-points were all-cause death, myocardial infarction (MI), target vessel revascularization (TVR), stent thrombosis (ST) and the composite of major adverse cardiovascular events (MACE), defined as death, MI or TVR. Patients receiving DES in our study, by virtue of physician selection, had more stable coronary artery disease and had lower baseline risk of thrombotic or restenotic events. Kaplan-Meier estimates of proportions of patients reaching the end-points were significantly lower for DES vs. BMS for all-cause death (p = 0.0008), TVR (p = 0.029) and MACE (p = 0.0015), but not MI (p = 0.945) or ST (p = 0.88). Multivariable analysis with propensity adjustment demonstrated that DES implantation was an independent predictor of lower rates of all-cause death (hazard ratio [HR] 0.48, 95% confidence interval [CI] 0.25-0.92), TVR (HR 0.50, 95% CI 0.27-0.94) and MACE (HR 0.62, 95% CI 0.41-0.94). CONCLUSIONS: In a contemporary PCI registry, selective use of DES in patients with CKD was safe and effective in the long term, with lower risk of all-cause death, TVR and MACE and similar risk of MI and ST as compared with BMS. The mortality benefit may be a result of selection bias and residual confounding, or represent a true finding; a hypothesis that warrants clarification by randomized clinical trials

    Long-Term Follow-Up of Patients after Acute Kidney Injury: Patterns of Renal Functional Recovery

    Get PDF
    Background and Objectives: Patients who survive acute kidney injury (AKI), especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. Design, Setting, Participants, &amp; Measurements: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA) for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD) or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value $60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. Results: The median length of follow-up was 50 months (30–90 months). All patients had stabilized their glomerular filtration rates by 18 months and 83 % of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19%) at discharge and in 54 (64%) by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p,0.0001) and serum creatinine at hospital discharge (OR 2.48, p = 0.007) were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and nee

    Clinical Features of Cardio-Renal Syndrome in a Cohort of Consecutive Patients Admitted to an Internal Medicine Ward

    Get PDF
    Introduction: Cardiorenal syndrome (CRS) is a disorder of the heart and kidney whereby interactions between the 2 organs can occur. We recorded the clinical features of CRS in patients consecutively admitted to an Internal Medicine ward. Patients and Methods: We retrospectively analyzed the anthropometric, history, clinical, biochemical and treatment characteristics in 438 out of 2,998 subjects (14.6%) admitted to our unit (from June 2007 to December 2009), diagnosed with CRS, according to Acute Dialysis Quality Initiative (ADQI) recommendations. Estimated glomerular filtration (eGFR) was calculated using several equations: MDRD (Modification of Diet in Renal Disease; 2 variations GFRMDRD186, GFRMDRD175), Mayo, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Cockroft-Gault. Results: Mean age was 80±8 years, 222 (50.6%) were males, 321 (73.2%) were smokers, 229 (52.2%) were diabetic, 207 (47.2%) had a history of acute myocardial infarction, 167 (38.1%) had angina, 135 (30.8%) were affected by cerebrovascular disease, 339 (77.3%) had peripheral arterial disease. CRS was type 1 in 211 cases (48.2%), type 2 in 96 (21.9%), type 3 in 88 (20.1%), type 4 in 29 (6.6%) and type 5 in 14 (3.2%). eGFR, calculated by different formulae, ranged between 31 and 36 ml/min/1.73 m2. GFR was lower in CRS type 3 than in the other types, and the values ranged between 24 and 27 ml/min/1.73 m2. Mean hospital length-of-stay (LOS) was 9.8±6.3 days. Diuretics were the most prescribed medication (78.7%); only 5 patients underwent haemodialysis. Conclusions: CRS is common, especially in the elderly. CRS Type 1 was the prevalent subset and patients had stage 3-4 renal insufficiency. Results obtained from the GFR equations were similar although the Mayo equation tended to overestimate the eGFR
    corecore