396 research outputs found

    Principles for integrating reactive species into in vivo biological processes:examples from exercise physiology

    Get PDF
    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question

    Effect of additive concentration during copper deposition using EnFACE electrolyte

    Get PDF
    Copper deposition from solutions using high concentration of acid, metal ions and polyethylene glycol (PEG), and bis-(3-sulphopropyl) disulphide (SPS) and chloride ions (Cl-) is well known. A recent maskless micropatterning technology, which has the potential to replace the traditional photolithographic process, called EnFACE, proposed using an acid-free, low metal ion solution which is in direct contrast to those used in standard plating technology. In this work copper has been deposited using both standard electroplating solutions and those used in the EnFACE process. In the standard electrolyte 0.63 M CuSO4 and 2.04 M H2SO4 has been used, along with Gleam additives supplied by Dow Chemicals. For the Enface electrolyte, copper deposition has been carried out without any acid, and with different concentrations of additives between 17%-200% of those recommended by suppliers. 25 μm of metal has been plated on stainless steel coupons as suggested by ASTM, peeled off and subjected to ductility and resistance measurements. Scanning electron microscopy and electron back scatter diffraction have been carried out to determine the deposit morphology. It was found that copper deposits obtained from acid-free solutions containing low concentration of metal ion and additives produced copper deposits with properties which are comparable to those obtained from standard electrolytes. The optimum additive concentration for the EnFACE electrolyte was 50% of the supplier recommended value

    The contribution of Citizens’ Observatories to validation of satellite‐retrieved soil moisture products

    Get PDF
    The GROW Observatory (GROW) will create a sustainable citizen platform and community to generate, share and utilise information on land, soil and water resources at a resolution hitherto not previously considered. The European Space Agency’s Sentinel‐1 is the first mission capable of providing high‐resolution soil moisture information, but a proper validation of Sentinel data remains a challenge given the scarcity of available in situ reference measurements. Establishment of a dense network of in situ measurement can bridge the gap in spatial resolution between in situ and satellite‐based soil moisture measurements enabling validation and calibration of ground and remotely measured soil moisture observations. The potential exists to answer scientific questions including the validity of satellite data, the impact of climate change on land management thus supporting the needs of growers and integrating citizen and scientific research to be more directly applicable and relevant

    Biosemiotics, politics and Th.A. Sebeok’s move from linguistics to semiotics

    Get PDF
    This paper will focus on the political implications for the language sciences of Sebeok’s move from linguistics to a global semiotic perspective, a move that ultimately resulted in biosemiotics. The paper will seek to make more explicit the political bearing of a biosemiotic perspective in the language sciences and the human sciences in general. In particular, it will discuss the definition of language inherent in Sebeok’s project and the fundamental re-drawing of the grounds of linguistic debate heralded by Sebeok’s embrace of the concept of modelling. Thus far, the political co-ordinates of the biosemiotic project have not really been made explicit. This paper will therefore seek to outline 1. how biosemiotics enables us to reconfigure our understanding of the role of language in culture; 2. how exaptation is central to the evolution of language and communication, rather than adaptation; 3. how communication is the key issue in biosphere, rather than language, not just because communication includes language but because the language sciences often refer to language as if it were mere “chatter”, “tropes” and “figures of speech”; 4. how biosemiotics, despite its seeming “neutrality” arising from its transdisciplinarity, is thoroughly political; 5. how the failure to see the implications of the move from linguistics to semiotics arises from the fact that biosemiotics is devoid of old style politics, which is based on representation (devoid of experience) and “construction of [everything] in discourse” (which is grounded in linguistics, not communication study). In contrast to the post-“linguistic turn” idea that the world is “constructed in discourse”, we will argue that biosemiotics entails a reconfiguration of the polis and, in particular, offers the chance to completely reconceptualise ideology

    MitoNeoD:a mitochondria-targeted superoxide probe

    Get PDF
    Mitochondrial superoxide (O2⋅−) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅−, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅− probe, MitoNeoD, which can assess O2⋅− changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅−-sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅− over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅− from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅−production in health and disease

    The effects of surface stripping ZnO nanorods with argon bombardment

    Get PDF
    ZnO nanorods are used in devices including field effects transistors, piezoelectric transducers, optoelectronics and gas sensors. However, for efficient and reproducible device operation and contact behaviour, surface contaminants must be removed or controlled. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanorods allowing intrinsic surface measurements through a cross section of the material. Photoluminescence finds that the defect distribution is higher at the near-surface, falling away in to the bulk. Contacts to the n-type defect-rich surface are near-Ohmic, whereas stripping away the surface layers allows more rectifying Schottky contacts to be formed. The ability to select the contact type to ZnO nanorods offers a new way to customize device behaviour

    A Three-Sample Study of Perfectionism and Field Test Performance in Athletes.

    Get PDF
    Field tests are commonly used by sport scientists for performance monitoring and evaluation. While perfectionism predicts performance in a range of contexts, it is currently unclear whether perfectionism predicts performance in such tests. To address this lack of understanding, the present study examined the relationships between perfectionism and fitness-based field test performance across three athlete samples. After completing a measure of perfectionism (striving for perfection and negative reactions to imperfection), sample one (n = 129 student athletes) participated in a series of countermovement jumps and 20-metre sprint trials, sample two (n = 136 student athletes) participated in an agility task, and sample three (n = 116 junior athletes) participated in the Yo-Yo intermittent recovery test (level one). Striving for perfection predicted better sprint and Yo-Yo test performance. Negative reactions to imperfection predicted worse sprint performance. Mini meta-analyses of the combined data (N = 381) showed that striving for perfection was positively related to performance (r+ = .24), but negative reactions to imperfection was unrelated to performance (r+ = -.05). The present findings indicate that striving for perfection may predict better fitness-based field test performance, while negative reactions to imperfection appears to be ambiguous
    corecore