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Abstract
ZnO nanorods are used in devices including field effects transistors, piezoelectric transducers,
optoelectronics and gas sensors. However, for efficient and reproducible device operation and
contact behaviour, surface contaminants must be removed or controlled. Here we use low doses
of argon bombardment to remove surface contamination and make reproducible lower resistance
contacts. Higher doses strip the surface of the nanorods allowing intrinsic surface measurements
through a cross section of the material. Photoluminescence finds that the defect distribution is
higher at the near-surface, falling away in to the bulk. Contacts to the n-type defect-rich surface
are near-Ohmic, whereas stripping away the surface layers allows more rectifying Schottky
contacts to be formed. The ability to select the contact type to ZnO nanorods offers a new way to
customize device behaviour.

S Online supplementary data available from stacks.iop.org/NANO/26/415701/mmedia
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1. Introduction

Zinc oxide (ZnO) is a metal oxide semiconductor with a direct
wide band gap of 3.37 eV and a high exciton binding energy
of 60 meV [1]. Its novel properties, including high transpar-
ency, a large piezoelectric constant, room temperature ferro-
magnetism, thermal and mechanical stability and the ability to
form numerous nanostructures, have meant that it has
attracted much attention in recent years [2].

ZnO nanorods have been used in field effects transistors,
piezoelectric transducers, optoelectronic devices and gas
sensors [3–5]. For efficient and reproducible device operation

surface contaminants must be removed using techniques
which include surface passivation, annealing and argon
bombardment [6–8]. However, numerous studies have shown
that the defect chemistry of ZnO changes after annealing
which is known to affect the transport properties [9–11].
Dulub et al used argon bombardment to remove surface
contaminants from single crystal ZnO and vacuum annealing
to repair the surface in order to carry out scanning tunnelling
microscopy (STM) [8]. Ra et al state that they studied the
effects of argon ion bombardment on ZnO nanowires by
creating a single nanowire FET; however they appear to have
used an argon plasma and observed that the mobility, carrier
concentration and conductivity increased after treatment [3].
They also carried out photoluminescence (PL) to assess the
changes in the defect chemistry, and concluded the change in
conductivity was due to a decrease in the electron trapping
species on the surface and an increase in oxygen vacancies.

Other recent studies have assessed the effects of argon
plasma as well as hydrogen and oxygen plasmas [4, 12, 13].
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Ra et al found that oxygen plasma treatment reduced the
conductivity by reducing the donor like defect concentration
while hydrogen plasma increased the conductivity [12, 13].
Similar effects were seen by Law and Thong who reduced
carrier concentration using oxygen plasma [4]. Ionizing argon
plasma can cause a substantial negative shift in the threshold
gate voltage of a single ZnO nanowire FET while oxygen
plasma can cause a substantial positive shift [3, 12].

Here, we use argon bombardment to remove surface
contaminants to improve the reproducibility of contact for-
mation. Increased doses have been used to controllably strip
the surface of zinc oxide nanorods to investigate the core
properties, the distribution of defects and the resulting change
in contact formation. Scanning electron microscopy (SEM),
nanoscale two point probe, PL and energy dispersive x-ray
spectroscopy (EDX) have been used characterize changes in
resistance and defect density, with a simulation used to con-
firm the reason for the changes observed.

2. Experiment

ZnO nanorods were synthesized hydrothermally in a solution
of zinc nitrate and hexamine at 90 °C for 9 h and mechani-
cally transferred on to Si/SiO2 wafers to create two samples
(here after referred to as Sample 1 and Sample 2) [14]. Two
point probe measurements were carried out on Sample 1 using
an Omicron LT Nanoprobe with the tungsten probes annealed
to reduce probe oxide contamination [15, 16]. Two tungsten
probes were approached onto nanorods using a method
developed to ensure minimal compressive strain at the point
of contact providing intrinsic characterization [17]. Four I–V
sweeps were preformed from −1 V to +1 V and averaged on
four randomly selected nanorods. For the PL, three spectra
were taken from different areas of Sample 2 and averaged.
After characterization the nanorods were treated with argon
bombardment, using the sample current as a measure of dose,

for 15 min. The doses used were 2 μA, 12 μA, 19 μA, 23 μA
and 26 μA (which correspond to energies: 0.3 keV, 0.5 keV,
1.0 keV, 1.5 keV and 2 keV) and after each treatment the
nanorods were re-characterized, with Sample 1 remaining in
vacuum. After the final treatment of argon bombardment
Sample 2 was also characterized using EDX.

A 3D simulation with probe diameter 15 nm and probe
separation 1100 nm was modelled within Atlas by Silvaco,
using a method developed by ourselves, described elsewhere
[18, 19]. The material parameters for the ZnO semiconductor
used were: bandgap 3.37 eV, electron affinity 4.5 eV,
dielectric constant 2.0, conduction band density of states
2.2×1018 cm−3, valence band density of 1.8×1019 cm−3,
and the effective Richardson constants for electrons and holes
were 23.7 A cm−2 K−2 and 96.3 A cm−2 K−2, respec-
tively [20].

Thermionic emission and tunnelling across the Schottky
barrier at the probe–nanorod interface were included in the 3D
simulations. To calculate thermionic emission current, the
surface recombination velocity and the field dependent barrier
lowering originating from the image force were taken into
account [18, 21]. Tunnelling was considered for both electrons
and holes. Using the universal Schottky tunnelling model, the
localized tunnelling rates were calculated through the structure
of the semiconductor close to the interface [21, 22].

3. Results and discussions

The synthesized nanorods were of hexagonal form with
width typically ranging from 250 nm to 350 nm and
lengths typically ranging from 1 μm to 2.5 μm. There is
no visible difference between the nanorods before argon
bombardment (figure 1(a)) and after the 2 μA dose
(figure 1(b)). Doses above this caused apparent physical
damage to the ZnO nanorods, with a pitted surface and
reduced dimensions as a result of bombardment mechanism

Figure 1. SEM images of ZnO nanorods (a) before; and after 15 min of argon bombardment with dose (b) 2 μA, (c) 12 μA, (d) 19 μA, (e)
23 μA, (f) 26 μA.
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describe by Postawa et al [23], seen from figure 1(c) onwards.
At higher doses the resulting nanorod is visible within a
‘shadow’ of same dimensions as the original nanorod. This
could be either residual material from the nanorod, or the un-
etched silicon substrate protected by the nanorod prior to
removal.

High energy ion bombardment can cause argon to be
incorporated into the sample which EDX is capable of
detecting [24, 25]. However, EDX showed that no argon was
present in the ZnO nanorods after argon bombardment at the
highest dose.

Damage to nanorods caused by argon bombardment can
cause a change in the defect chemistry. Here PL has been
used to measure these changes with each spectrum normal-
ized to the near band edge (NBE) peak, presented in figure 2.
The NBE peak is centred at 376 nm and the deep level
emission (DLE) peak at 595 nm and neither peak changes
position after argon bombardment. Fitting of the DLE peak is
shown in the supplementary information with four compo-
nents centred at 543 nm, 595 nm, 638 nm and 765 nm. These
defect components are attributed to the following transitions:
from the conduction band to an interstitial oxygen defect with
no charge Oi [26–29], from an oxygen vacancy with a posi-
tive charge VO

+ to Oi [28, 30, 31], from VO
+ to an oxygen

vacancy defect with no charge VO [32] and from the con-
duction band to VO [29, 33, 34] respectively. The two largest
components of the DLE peak are transitions involving the
oxygen vacancy with a positive charge. This defect has been
identified as the source of the excess electrons causing the
n-type nature of ZnO, discussed later. The DLE peak nor-
malized to the NBE peak intensity is plotted in figure 3.

A dose of 2 μA did not significantly change the nor-
malized intensity or shape of the DLE peak. Increased treat-
ment resulted in a drop in the intensity with all component
peaks decreasing, which we attribute to the stripping of the
nanorod surface. Since the reduction occurs in line with the
stripping seen in the SEM images, this implies that these
defects are located near the surface of the as grown ZnO
nanorods.

Changes in the defect chemistry for ZnO has been shown
to alter their electrical transport properties [3]. Here, nanoscale
two point-probe was used to perform I–V measurements and
the mean normalized resistance at +1 V and −1 V is shown
against argon bombardment dose in figure 3. Normalized
resistance was calculated using the average of the measured
resistances of the nanorods divided by the probe separation.

Before argon bombardment the average normalized
resistance at +1 V was 2.6×1013Ωm−1 and at −1 V was
2.0×1013Ωm−1 with a large standard deviation suggesting
an inconsistent probe-nanorod contact. After a 2 μA dose the
normalized resistance decreases to 2.7×1010Ωm−1 at both
+1 V and −1 V and the standard deviation reduces. This
could be caused by a change in the defect chemistry, although
the PL spectra show that there is little to no change in the
DLE peak. Therefore, we attribute the drop in normalized
resistance to the removal of nanorod surface contamination
giving more reproducible lower resistance contacts. Further
argon bombardment at higher doses increased the average
normalized resistance due to the removal of charge carriers
caused by the reduction in the number of oxygen vacancies
with a positive charge, as discussed before.

In order to establish the mechanism for the measured
change in the electrical behaviour a 3D simulation was
developed. A model for two cases was established, firstly for
‘cleaned’ nanorods, equivalent to the experimental data fol-
lowing the 2 μA argon dose, and secondly for ‘etched’
nanorods equivalent to the 26 μA treatment. The cleaned
nanorods are modelled as a 330 nm diameter wire, with a
doping concentration of 1018 cm−3, and a surface charge of
5×1013 cm−2 to simulate the surface oxygen vacancies
identified earlier with PL. For the etched nanorods the dia-
meter is reduced to 270 nm as observed with SEM, the sur-
face charge is removed and the doping concentration is
reduced to 1016 cm−3 in line with the direction of PL change.
For both cases a barrier height of jB=0.27 eV was used at
the metal–nanorod interface.

Figure 2. PL spectra for ZnO nanorods with different doses of argon
bombardment.

Figure 3. Graph of normalized resistance and DLE peak intensity
against the sample current from argon bombardment. Error bars
show the standard deviation.
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In the experimental data Ohmic contacts were formed
between the probes and the nanorods both before cleaning and
after the first dose, as expected [35]. Measured and simulated
I–V characteristics of the nanorods are shown in figure 4. For
the cleaned case both measured and simulated results indicate
primarily an Ohmic contact, which becomes more rectifying
after etching. Simulations find that inherent surface charge
leads to surface downward band bending before etching. At
the contact-nanorod interface the barrier height is pinned and
the reduction of the negative surface charge after etching
cannot reduce the barrier height, but instead broadens the
potential barrier increasing the rectifying response.

Ra et al has observed similar results, with a three order of
magnitude increase in current after argon plasma treatment,
which they attributed to the removal of charge trapping spe-
cies and increased oxygen vacancies on the surface of their
chemical vapour deposition (CVD) grown nanowires [3].
However, their PL results show that the change in the DLE
peak is caused by an increase in the number of oxygen
vacancies without charge which would not add to the carrier
concentration. However we have not observed any charge
trapping defects, most likely because CVD grown nanowires
have a different defect chemistry with more p-type defects
[36]. We suggest it is also possible that Ra et al observed
increased conductivity due to the removal of surface con-
taminants with improved contact formation.

There has also been recent discussion that the n-type
nature of ZnO is related to hydrogen interstitials rather than
oxygen vacancies [28, 37]. These defects would play a similar
role by increasing the carrier concentration but cannot be
detected using PL. Our results suggest that the defects are
concentrated at the near-surface, with oxygen vacancies
confirmed as present. Hydrogen interstitials may also be
present and play a role, with our results indicating that if so
they would be located primarily at the near-surface too.

4. Conclusion

ZnO nanorods have been treated with increasing doses of
argon bombardment and the changes in the defect chemistry
and electrical transport measured both experimentally and in
simulation. A low dose of argon bombardment removed
surface contaminants without changing the defect chemistry
of the nanorods, resulting in significantly reduced resistance
due to improved contact formation.

It has also been found that the defects are located in the
near-surface region of the as grown ZnO nanorods. Further
argon bombardment at higher doses stripped the surface
causing an increase in the measured resistance and a change
in the contact nature towards more rectifying. PL results and
simulation showed that this is due to the removal of surface
charge originating from the n-type defect.

Our work indicates the potential for improving nanorod
and nanowire device operation. Firstly, removing surface
contaminants with a low dose of argon bombardment gives
more reproducible lower resistance contacts without altering
the defect chemistry. Secondly, a slightly higher dose can
cause pitting of the surface with an increase in the surface
area without adversely affecting conductivity. This could see
applications in sensing devices such as gas sensors where
increased surface area, low resistance materials are highly
desirable [38]. Thirdly, selective stripping allows either an
Ohmic-like or more Schottky-like contact to the nanorod to be
arbitrarily selected. Finally, the technique allows selective
probing through the entire nanorod core, potentially allowing
other surface sensitive techniques beyond those used here,
such as x-ray photoelectron spectroscopy, to be carried out
through a cross-section of the material.
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