92 research outputs found
Reference standardization and triglyceride interference of a new homogeneous HDL-cholesterol assay compared with a former chemical precipitation assay
A homogeneous HDL-c assay (HDL-H), which uses polyethylene glycol-modified
enzymes and sulfated alpha-cyclodextrin, was assessed for precision,
accuracy, and cholesterol and triglyceride interference. In addition, its
analytical performance was compared with that of a phosphotungstic acid
(PTA)/MgCl2 precipitation method (HDL-P). Within-run CVs were < or =
1.87%; total CVs were < or = 3.08%. Accuracy was evaluated in fresh
normotriglyceridemic sera using the Designated Comparison Method (HDL-H =
1.037 Designated Comparison Method + 4 mg/L; n = 63) and in moderately
hypertriglyceridemic sera by using the Reference Method (HDL-H = 1.068
Reference Method - 17 mg/L; n = 41). Mean biases were 4.5% and 2.2%,
respectively. In hypertriglyceridemic sera (n = 85), HDL-H concentrations
were increasingly positively biased with increasing triglyceride
concentrations. The method comparison between HDL-H and HDL-P yielded the
following equation: HDL-H = 1.037 HDL-P + 15 mg/L; n = 478. We conclude
that HDL-H amply meets the 1998 NCEP recommendations for total error; its
precision is superior compared with that of HDL-P, and its average bias
remains below +/-5% as long as triglyceride concentrations are < or = 10
g/L and in case of moderate hypercholesterolemia
Critical implications of IVDR for innovation in diagnostics: input from the BioMed alliance diagnostics task force
With the implementation of Regulation (European Union [EU]) 2017/746 on in vitro diagnostic medical devices (IVDR), from May 26, 2022, onwards, the development and use of diagnostic tests will be governed by a vastly expanded and upgraded EU regulatory framework. We provide here an overview of the amended transition timelines, the role of notified bodies, EU reference laboratories, expert panels, and the Medical Device Coordination Group (MDCG). We also describe the implications of the IVDR for innovative laboratory medicine by explaining the exemption for in-house devices (IH-IVDs). Two key challenges faced by the academic diagnostic sector are: (1) the stipulation on equivalence of tests (article 5.5d), which poses a new condition for the use of IH-IVDs and (2) the gray area between CE marked in vitro diagnostics (CE-IVDs), modified CE-IVDs, Research Use Only (RUO) tests, and IH-IVDs. Furthermore, the results of a questionnaire on current diagnostic practice conducted by European medical societies collaborating in the BioMed Alliance indicate widespread use of IH-IVDs in diagnostic laboratories across Europe and emphasize the need for support and guidance to comply with the IVDR. Diagnostic equivalents of the European Reference Networks (ERNs) for rare diseases could help ensure affordable and equal access to specialized diagnostics across the EU. Concerted action by clinical and laboratory disciplines, regulators, industry, and patient organizations is needed to support the efficient and effective implementation of the IVDR in a way that preserves innovation and safeguards the quality, safety, and accessibility of innovative diagnostics.Peer reviewe
Setting clinical performance specifications to develop and evaluate biomarkers for clinical use
Background: Biomarker discovery studies often claim ‘promising’ findings, motivating further studies and marketing as medical tests. Unfortunately, the patient benefits promised are often inadequately explained to guide further evaluation, and few biomarkers have translated to improved patient care. We present a practical guide for setting minimum clinical performance specifications to strengthen clinical performance study design and interpretation.
Methods: We developed a step-by-step approach using test evaluation and decision-analytic frameworks and present with illustrative examples.
Results: We define clinical performance specifications as a set of criteria that quantify the clinical performance a new test must attain to allow better health outcomes than current practice. We classify the proposed patient benefits of a new test into three broad groups and describe how to set minimum clinical performance at the level where the potential harm of false-positive and false-negative results does not outweigh the benefits. (1) For add-on tests proposed to improve disease outcomes by improving detection, define an acceptable trade-off for false-positive versus true-positive results; (2) for triage tests proposed to reduce unnecessary tests and treatment by ruling out disease, define an acceptable risk of false-negatives as a safety threshold; (3) for replacement tests proposed to provide other benefits, or reduce costs, without compromising accuracy, use existing tests to benchmark minimum accuracy levels.
Conclusions: Researchers can follow these guidelines to focus their study objectives and to define statistical hypotheses and sample size requirements. This way, clinical performance studies will allow conclusions about whether test performance is sufficient for intended use
Longitudinal Serum Protein Analysis of Women with a High Risk of Developing Breast Cancer Reveals Large Interpatient Versus Small Intrapatient Variations:First Results from the TESTBREAST Study
The prospective, multicenter TESTBREAST study was initiated with the aim of identifying a novel panel of blood-based protein biomarkers to enable early breast cancer detection for moderate-to-high-risk women. Serum samples were collected every (half) year up until diagnosis. Protein levels were longitudinally measured to determine intrapatient and interpatient variabilities. To this end, protein cluster patterns were evaluated to form a conceptual basis for further clinical analyses. Using a mass spectrometry-based bottom-up proteomics strategy, the protein abundance of 30 samples was analyzed: five sequential serum samples from six high-risk women; three who developed a breast malignancy (cases) and three who did not (controls). Serum samples were chromatographically fractionated and an in-depth serum proteome was acquired. Cluster analyses were applied to indicate differences between and within protein levels in serum samples of individuals. Statistical analyses were performed using ANOVA to select proteins with a high level of clustering. Cluster analyses on 30 serum samples revealed unique patterns of protein clustering for each patient, indicating a greater interpatient than intrapatient variability in protein levels of the longitudinally acquired samples. Moreover, the most distinctive proteins in the cluster analysis were identified. Strong clustering patterns within longitudinal intrapatient samples have demonstrated the importance of identifying small changes in protein levels for individuals over time. This underlines the significance of longitudinal serum measurements, that patients can serve as their own controls, and the relevance of the current study set-up for early detection. The TESTBREAST study will continue its pursuit toward establishing a protein panel for early breast cancer detection
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments
Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
Stem and Progenitor Cell Therapy for Pulmonary Arterial Hypertension: Effects on the Right Ventricle (2013 Grover Conference Series)
Abstract. In experimental animals and in patients with pulmonary arterial hypertension (PAH), a wide spectrum of structural and functional conditions is known that may be responsible for the switch of a state of “compensated” right ventricular (RV) hypertrophy to a state of RV failure. In recent years, therapy with differentiated cells, endothelial progenitor cells, and mesenchymal stem cells has been shown to cause partial or complete reversal of pathological characteristics of PAH. The therapeutic effects of stem or progenitor cell therapy are considered to be (1) paracrine effects from stem or progenitor cells that had engrafted in the myocardium (or elsewhere), by compounds that have anti-inflammatory, antiapoptotic, and proangiogenic actions and (2) unloading effects on the right ventricle due to stem or progenitor cell–induced decrease in pulmonary vascular resistance and decrease in pulmonary artery pressure
Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM
BACKGROUND The European Atherosclerosis Society-European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management.
CONTENT We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. () Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. () Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. () Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol.
SUMMARY Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels
- …