3,257 research outputs found

    Spatiotemporal variability in the O-18-salinity relationship of seawater across the tropical Pacific Ocean

    Full text link
    The relationship between salinity and the stable oxygen isotope ratio of seawater (δ18Osw) is of utmost importance to the quantitative reconstruction of past changes in salinity from δ18O values of marine carbonates. This relationship is often considered to be uniform across water masses, but the constancy of the δ18Osw-salinity relationship across space and time remains uncertain, as δ18Osw responds to varying atmospheric vapor sources and pathways, while salinity does not. Here we present new δ18Osw-salinity data from sites spanning the tropical Pacific Ocean. New data from Palau, Papua New Guinea, Kiritimati, and Galápagos show slopes ranging from 0.09 ‰/psu in the Galápagos to 0.32‰/psu in Palau. The slope of the δ18Osw-salinity relationship is higher in the western tropical Pacific versus the eastern tropical Pacific in observations and in two isotope-enabled climate model simulations. A comparison of δ18Osw-salinity relationships derived from short-term spatial surveys and multiyear time series at Papua New Guinea and Galápagos suggests spatial relationships can be substituted for temporal relationships at these sites, at least within the time period of the investigation. However, the δ18Osw-salinity relationship varied temporally at Palau, likely in response to water mass changes associated with interannual El Niño–Southern Oscillation (ENSO) variability, suggesting nonstationarity in this local δ18Osw-salinity relationship. Applying local δ18Osw-salinity relationships in a coral δ18O forward model shows that using a constant, basinwide δ18Osw-salinity slope can both overestimate and underestimate the contribution of δ18Osw to carbonate δ18O variance at individual sites in the western tropical Pacific.We are grateful for the dedicated water samplers who enabled this research: Lori J. Bell and Gerda Ucharm of the Coral Reef Research Foundation, Palau; Rosa Maritza Motoche Gonzalez and the Fuerza Aerea Ecuatoriana, Santa Cruz, Galapagos, Ecuador; Taonateiti Kabiri and the students of Tennessee Primary School, London, Kiritimati; and the Manus Weather Observers, U.S. Department of Energy ARM Climate Research Facility, Manus, Papua New Guinea. We would like to thank the Galapagos National Park, the Kiritimati Ministry of Environment Lands and Agricultural Development for sample permits, and the Charles Darwin Research Station for logistical support. Funding sources for this work includes NSF-AGS-PF 1049664 to J.L.C., NSF P2C2-1203785 to K.M.C., J.L.C., and D.N. This research was also supported by the Office of Biological and Environment Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility. Isotope data are available as supporting information associated with the manuscript. (1049664 - NSF-AGS-PF; P2C2-1203785 - NSF; Office of Biological and Environment Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Climate Research Facility

    Ions modulate stress-induced nano-texture in supported fluid lipid bilayers

    Get PDF
    Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton

    Urban transportation: Perspectives on mobility and choice

    Get PDF
    A study of urban transportation systems are presented characterized by intensive scrutiny of many ideas, philosophies, and academic perspectives. This report is intended to communicate some dimensions of the urban transportation problem to the general public

    Far Ultraviolet Absolute Flux of alpha Virginis

    Full text link
    We present the far ultraviolet spectrum of alpha Virginis taken with EURD spectrograph on-board MINISAT-01. The spectral range covered is from ~900 to 1080 A with 5 A spectral resolution. We have fitted Kurucz models to IUE spectra of alpha Vir and compared the extension of the model to our wavelengths with EURD data. This comparison shows that EURD fluxes are consistent with the prediction of the model within 20-30%, depending on the reddening assumed. EURD fluxes are consistent with Voyager observations but are ~60% higher than most previous rocket observations of alpha Vir.Comment: 13 pages, 4 figures. Submitted to The Astrophysical Journa

    Inferentialism as an alternative to socioconstructivism in mathematics education

    Get PDF
    The purpose of this article is to draw the attention of mathematics education researchers to a relatively new semantic theory called inferentialism, as developed by the philosopher Robert Brandom. Inferentialism is a semantic theory which explains concept formation in terms of the inferences individuals make in the context of an intersubjective practice of acknowledging, attributing, and challenging one another’s commitments. The article argues that inferentialism can help to overcome certain problems that have plagued the various forms of constructivism, and socioconstructivism in particular. Despite the range of socioconstructivist positions on offer, there is reason to think that versions of these problems will continue to haunt socioconstructivism. The problems are that socioconstructivists (i) have not come to a satisfactory resolution of the social-individual dichotomy, (ii) are still threatened by relativism, and (iii) have been vague in their characterization of what construction is. We first present these problems; then we introduce inferentialism, and finally we show how inferentialism can help to overcome the problems. We argue that inferentialism (i) contains a powerful conception of norms that can overcome the social-individual dichotomy, (ii) draws attention to the reality that constrains our inferences, and (iii) develops a clearer conception of learning in terms of the mastering of webs of reasons. Inferentialism therefore represents a powerful alternative theoretical framework to socioconstructivism

    Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis

    Get PDF
    Neurodevelopmental disorders are often caused by chromosomal microdeletions comprising numerous contiguous genes. A subset of neurofibromatosis type 1 (NF1) patients with severe developmental delays and intellectual disability harbors such a microdeletion event on chromosome 17q11.2, involving the NF1 gene and flanking regions (NF1 total gene deletion [NF1-TGD]). Using patient-derived human induced pluripotent stem cell (hiPSC)-forebrain cerebral organoids (hCOs), we identify both neural stem cell (NSC) proliferation and neuronal maturation abnormalities in NF1-TGD hCOs. While increased NSC proliferation results from decreased NF1/RAS regulation, the neuronal differentiation, survival, and maturation defects are caused by reduced cytokine receptor-like factor 3 (CRLF3) expression and impaired RhoA signaling. Furthermore, we demonstrate a higher autistic trait burden in NF1 patients harboring a deleterious germline mutation in the CRLF3 gene (c.1166T\u3eC, p.Leu389Pro). Collectively, these findings identify a causative gene within the NF1-TGD locus responsible for hCO neuronal abnormalities and autism in children with NF1
    corecore