

Edinburgh Research Explorer

Web Scraping in the Statistics and Data Science Curriculum:
Challenges and Opportunities

Citation for published version:
Cetinkaya-Rundel, M & Dogucu , M 2020, 'Web Scraping in the Statistics and Data Science Curriculum:
Challenges and Opportunities', Journal of Statistics Education.
https://doi.org/10.1080/10691898.2020.1787116

Digital Object Identifier (DOI):
10.1080/10691898.2020.1787116

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Statistics Education

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Sep. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/334415008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/10691898.2020.1787116
https://doi.org/10.1080/10691898.2020.1787116
https://www.research.ed.ac.uk/portal/en/publications/web-scraping-in-the-statistics-and-data-science-curriculum-challenges-and-opportunities(78f529a4-5ef3-4a88-b955-5ae4c500862a).html

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ujse20

Journal of Statistics Education

ISSN: (Print) 1069-1898 (Online) Journal homepage: https://www.tandfonline.com/loi/ujse20

Web Scraping in the Statistics and Data Science
Curriculum: Challenges and Opportunities

Mine Dogucu & Mine Çetinkaya-Rundel

To cite this article: Mine Dogucu & Mine Çetinkaya-Rundel (2020): Web Scraping in the Statistics
and Data Science Curriculum: Challenges and Opportunities, Journal of Statistics Education, DOI:
10.1080/10691898.2020.1787116

To link to this article: https://doi.org/10.1080/10691898.2020.1787116

© The Author(s). Published with license by
Taylor and Francis Group, LLC

Accepted author version posted online: 09
Jul 2020.

Submit your article to this journal

Article views: 1311

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ujse20
https://www.tandfonline.com/loi/ujse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10691898.2020.1787116
https://doi.org/10.1080/10691898.2020.1787116
https://www.tandfonline.com/action/authorSubmission?journalCode=ujse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ujse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10691898.2020.1787116
https://www.tandfonline.com/doi/mlt/10.1080/10691898.2020.1787116
http://crossmark.crossref.org/dialog/?doi=10.1080/10691898.2020.1787116&domain=pdf&date_stamp=2020-07-09
http://crossmark.crossref.org/dialog/?doi=10.1080/10691898.2020.1787116&domain=pdf&date_stamp=2020-07-09

Web Scraping in the Statistics and Data Science
Curriculum: Challenges and Opportunities

Mine Dogucu*

Department of Statistics, University of California Irvine

and

Mine Çetinkaya-Rundel †

School of Mathematics, University of Edinburgh, Rstudio

Department of Statistical Science, Duke University

*Corresponding author Mine Dogucu mdogucu@uci.edu

Abstract
Best practices in statistics and data science courses include the use of real and
relevant data as well as teaching the entire data science cycle starting with importing
data. A rich source of real and current data is the web, where data are often
presented and stored in a structure that needs some wrangling and transforming
before they can be ready for analysis. The web is a resource students naturally turn
to for finding data for data analysis projects, but without formal instruction on how to
get that data into a structured format, they often resort to copy-pasting or manual
entry into a spreadsheet, which are both time consuming and error-prone. Teaching
web scraping provides an opportunity to bring such data into the curriculum in an
effective and efficient way. In this paper we explain how web scraping works and how
it can be implemented in a pedagogically sound and technically executable way at
various levels of statistics and data science curricula. We provide classroom
activities where we connect this modern computing technique with traditional
statistical topics. Lastly, we share the opportunities web scraping brings to the
classrooms as well as the challenges the instructors and tips for avoiding them.

Keywords: Web scraping, R language, teaching, curriculum, data science

1 Introduction

From rental housing prices to daily weather temperatures, the world wide web

is a great resource for locating real and current data for the statistics and data

science classrooms. Inclusion of authentic data experiences has been at the

core of recommendations for statistics curricula for many years including the

GAISE College reports (GAISE 2005, 2016) as well the earlier version of

these recommendations in the Cobb (1992) report. Prior research suggests

that students’ perceptions of statistics being relevant in real life is associated

Acc
ep

te
d

M
an

us
cr

ipt

mailto:mdogucu@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1080/10691898.2020.1787116&domain=pdf

with use of real data in the statistics classroom and students find the course

interesting when real data is used (Neumann et al. 2013).

With or without the instructors’ intent to rely on the web as the source of data,

many novice learners often turn to the web to locate real data for class

projects. Without any formal training on retrieving data from the internet in an

automated fashion, they often rely on hand scraping which consists of

manually entering the data into a spreadsheet or copy-pasting. Both of these

methods are time consuming and error-prone. In contrast, web scraping

techniques allow students to gather unstructured information from the internet

and convert it into a structured form in a rectangular fashion that meets tidy

principles (Wickham 2014). Web scraping is the process of extracting data off

the web programmatically and transforming it into a structured dataset. Web

scraping allows for larger amounts of data to be collected in a shorter span of

time and in an automated fashion that minimizes errors.

There are two types of web scraping. The first is screen scraping, where you

extract data from source code of a website, with an HTML parser or regular

expression matching. The second is using application programming

interfaces, commonly referred to as APIs. This is where a website offers a set

of structured HTTP requests that return JSON or XML files. In this paper we

focus on the former, however we note that prior to going down the screen

scraping path, it’s recommended to first check if a website offers an API to

access their data.

In addition to being helpful for gathering data for class projects, web scraping

as a skill has benefits for the student, regardless of whether their career

trajectory involves working in industry, government, or academia. For

example, many national statistical agencies started relying on web scraping

as a form of data collection, including the Italian National Institute of Statistics,

ISTAT (Polidoro et al. 2015), the Federal Statistical Office of Germany,

Destatis (Destatis 2018), and Statistics Netherlands (Ten Bosch et al. 2018).

One widespread way such agencies use web scraping is in automating the

collection of prices of specific consumer products (e.g. electronics, housing,

Acc
ep

te
d

M
an

us
cr

ipt

and medicine) to calculate some form of index of consumer prices. Uses of

web scraping for data collection for other purposes have also been

considered. The United States Census Bureau is building a tool that

automatically scrapes tax revenue collections from websites of state and local

governments as opposed to collecting this information with a traditional

questionnaire (Dumbacher and Capps 2016). Similarly, Statistics Canada is

looking into ways how they can incorporate web scraping to reduce the

burden on survey responders (2019).

In industry, perhaps the best-known scraper is Googlebot (Google 2019)

which scrapes data from many web pages for Google’s search engine. Web

scraping is also often used in e-commerce. For instance, flight comparison

websites scrape data from multiple airlines (Poggi et al. 2007). Many e-

commerce websites scrape pricing information from their competitors’

websites (Stiving 2017).

With its increased use, web scraping has become an important skill in the

work force. A simple job search (conducted on November 11, 2019) on

LinkedIn for “web scraping” returned 234 job listings. For comparison, our

searches on “Bayesian”, “linear models”, and “chi square” returned 1236, 259,

and 60 job listings, respectively. Our online job search has also shown that

web scraper is in fact a job title and not just a skill that is listed in job ads.

Distil Networks reported a salary range up to $128,000 for web scrapers

(2016).

Inclusion of web scraping in the statistics and data science curriculum is not a

novel idea. When Nolan and Temple Lang (2010) called for inclusion of

modern computing in statistics curricula, they emphasized increase in use of

web data and statisticians’ need to access web data. In addition, their book on

XML and web technologies has been an important guide for data scientists

(2014). In the last decade since their paper, as the emphasis on computing

topics increased in statistics education, web scraping gained popularity as

well. In a survey of seven schools that had incorporated data science topics in

their statistics curricula, Hardin et al. (2015) reported that six of the seven

Acc
ep

te
d

M
an

us
cr

ipt

schools cover web scraping. More recently, in their guide to teaching data

science Hicks and Irizarry (2018) listed web scraping and accessing web data

via APIs as part of an introductory data science course. Similarly, Loy

et al. (2019) developed a set of tutorials and case studies that support data

science in the statistics curriculum and web scraping is one of the nine topics

their projects cover.

Needless to say, we also believe that web scraping should be in every

statistician’s and data scientist’s toolbox and it should be included in the

curricula. There are vignettes, tutorials, and books written on the technical

aspects of web scraping which can help instructors learn web scraping,

however, we were not able to locate any resources that demonstrate and

discuss how to teach web scraping. In this paper, we introduce technical tools

for scraping data and provide a classroom activity as a concrete example.

Based on our teaching experiences, we discuss some of the challenges of

teaching web scraping and offer suggestions for how these may be overcome.

Lastly, we discuss the opportunities that web scraping brings to statistics and

data science curricula.

Throughout the paper, we introduce code for web scraping purposes.

Considering length limitation of this manuscript, we provide the full code for

analysis on a GitHub repository1. In addition, the code is provided as an

RStudio Cloud project2 so the readers who choose to run the code while

reading the paper may do so. Within text we provide real code when

introducing a concept but we use pseudocode for describing the bigger

computational ideas.

2 Technical Tools

2.1 HTML & CSS

HyperText Markup Language (HTML) is the standard language behind almost

every web document. Every web user interacts with HTML with or without

realizing it. The main purpose of HTML is to handle content of a webpage

such as text, hyperlinks, and images. CSS (Cascading Style Sheets) is

Acc
ep

te
d

M
an

us
cr

ipt

file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/github.com/mdogucu/web-scrape%7d%7b%7d
file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/github.com/mdogucu/web-scrape%7d%7b%7d
file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/rstudio.cloud/project/797118%7d%7b%7d
file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/rstudio.cloud/project/797118%7d%7b%7d

another core technology for building web pages. While HTML provides the

structure of the page, CSS provides the styling and the layout. Instructors

teaching web scraping do not need to be fluent in HTML and CSS to teach

web scraping, especially in the introductory data science class. However, a

basic knowledge of these technologies can help instructors be a ahead of

students and understand why things work the way they do. In this section, we

provide a brief introduction to HTML and CSS.

Figure 1 shows a simple web page with text and hyperlinks, built using HTML.

The code below shows the back-end of the web page in this figure. Any HTML

element is specified with an opening (e.g. <html>) and a closing tag

(e.g. </html>) in this case, the <html> tag signifies creation of a HTML

document. Within an HTML document there are two major sections as head

and body of a document, both specified with their opening and closing tags.

The <p> tag specifies a paragraph.

<html>

<head>

</head>

<body>

<p>

The Journal of Statistics Education was established

in 1992.

You are currently reading a manuscript from this

journal.</p>

<p>

The American Statistician was established in

1947.</p>

</body>

</html>

Acc
ep

te
d

M
an

us
cr

ipt

The HTML code for the hyperlink for The Journal of Statistics Education is

multifaceted. The full code

The Journal of

 Statistics Education first consists of an opening and closing anchor

tag specified with <a> and respectively. This tag defines a hyperlink.

Then the href attribute is set to a value of

https://www.tandfonline.com/toc/ujse/current. This attribute specifies the

destination of the hyperlink.

Figure 2 shows a web page that uses CSS in addition to HTML. In order to

make all the establishment dates of journals red a CSS class needs to be

defined. In the code below a CSS class called journal-date is defined. CSS

classes are defined in a style tag (or in a separate document) that is inside the

head part of the HTML document. The names of CSS classes are preceded

with a period.

<style>

.journal-date {

color:red;

}

</style>

Once the class is defined then it can be used in the body of the document to

define the class of any HTML tag. The code below shows how to alter the

color of the establishment year for Journal of Statistics Education.

1992

The rest of the styling in this web page is constructed in a similar fashion. We

summarize the structure of this web page with a partial document tree in

Figure 3. In this figure, we eliminated the elements of the head tag and

focused on the body tag. In the body tag, we have provided only the first

paragraph with the Journal of Statistics Education. The structure of the

paragraph for the American Statistician has also been eliminated from the

Acc
ep

te
d

M
an

us
cr

ipt

figure due to space limitations but is similar to the structure of the previous

paragraph. The white boxes in the figure represent the text that is visible to

the web page user and the black boxes represent nodes of the document on

the back-end. Note that current-journal is preceded with a hashtag rather than

a period which indicates that this is a CSS ID rather than a CSS class. CSS

IDs are used to identify only one element in a document such as #current-

journal only making the sentence You are currently reading a manuscript

from this journal italic. CSS classes can identify multiple elements such as

.journal-date making multiple establishment years red. It would be possible

to use a class and an ID or multiple classes for a single HTML element. CSS

selectors are used to select elements to style in an HTML document. Class

and ID are two of the many CSS selectors. Readers may find the code for

Figure 2 provided on the GitHub repo helpful to understand CSS classes and

IDs.

2.2 SelectorGadget

Basic understanding of HTML and CSS can be useful for statisticians and

data scientists working with web data. However understanding details of

HTML and CSS as well as a web designer needs is neither necessary nor

feasible within the constraints of a statistics or data science curriculum.

Additionally, for students who are new to programming as a whole, even

locating CSS selectors for elements of a web page or reading the source code

for a webpage can be challenging. Thus, tools with a simple graphical user

interface for locating CSS selectors on a web page can be immensely helpful

in the data science classroom. A popular option for such a tool is the

SelectorGadget, an open source extension for Chrome browsers. The

SelectorGadget homepage features a video showing how SelectorGadget can

be used to identify CSS selectors for page elements (Cantino

and Maxwell 2013). Similar extensions exist for other browsers as well,

e.g. ChroPath for Firefox (AutonomIQ 2019).

2.3 rvest package

Acc
ep

te
d

M
an

us
cr

ipt

The SelectorGadget helps identify the CSS selectors for certain elements in a

webpage, and the next step is to grab these elements and import them into R,

i.e. scrape them. We use the rvest package for accomplishing this task

(Wickham 2019 a).

This package makes it easy to scrape data from HTML web pages, and is

designed to work with magrittr pipelines, which makes it a great fit for an R

curriculum using the tidyverse suite of packages (Bache

and Wickham 2014; Wickham et al. 2019). In a nutshell, scraping data with

rvest involves the following steps:

1. Read the HTML page into R with read_html()

2. Extract nodes corresponding to elements of interest with the help of the

SelectorGadget to identify them and functions like html_node(),

html_table(), etc.

3. Clean up the extracted text fields using string manipulation tools,

e.g. functions from the stringr package (Wickham 2019 b).

In the next section we give an example of a web scraping exercise where we

provide details on how to use this toolkit for web scraping as well as details on

activities and assignments that can be used in various levels of statistics and

data science courses.

Before we get started, let’s load the packages we will need for this example.

library(tidyverse)

library(rvest)

3 Classroom Examples

In this section we present an example where students get to work with real

data with an international appeal, from OpenSecrets (opensecrets.org), “the

most comprehensive resource for federal campaign contributions, lobbying

data and analysis available anywhere” (OpenSecrets.org 2019). This website

is a rich source of information for political data, especially election related data

at various levels, e.g. local, state, and national elections. For this example we

Acc
ep

te
d

M
an

us
cr

ipt

https://www.opensecrets.org/

will focus on contributions to United States elections from foreign-connected

political action committees (PACs). The main reason why we decided to

feature this particular data source is its international appeal – students

anywhere in the world likely have some interest in, or at least awareness, of

US politics and elections nowadays, though data on local elections is likely

not as interesting to them as data that has some international connection. We

start the assignment with the following opening paragraph to help put in

perspective why we’re conducting this analysis:

Every election cycle brings its own brand of excitement – and lots of money.

Political donations are of particular interest to political scientists and other

researchers studying politics and voting patterns. They are also of interest to

citizens who want to stay informed of how much money their candidates raise

and where that money comes from.

In the United States, “only American citizens (and immigrants with green

cards) can contribute to federal politics, but the American divisions of foreign

companies can form political action committees (PACs) and collect

contributions from their American employees” (Open Secrets - Foreign

Connected PACs 2019). In this assignment we will scrape and work with data

on foreign connected PACs that donate to US political campaigns.

Then we go on to explain what students will actually do as part of the

assignment. An appealing aspect of this example, from an educator’s

perspective, is that it can be used at multiple levels, from simple table

scraping to iteration over multiple pages. Whatever level the assignment is

posed at, the ultimate findings are not trivial to deduce simply by interacting

with the data on the website (e.g. by sorting tables, etc.). This feature of the

task demonstrates the doors web scraping skills can open.

Before we dive further into sample exercises at various levels, let’s first

address an important concept that should be highlighted on any web scraping

exercise at any level – checking for permission to scrape the data. This is a

concept that can, and should, be introduced at any level without getting into

Acc
ep

te
d

M
an

us
cr

ipt

too much technical detail. A robots.txt file is a plain text file that lives at the

root of a website and it consists of one or more rules, each allowing (or

blocking) access for a given crawler to a specified file path in that website

(Introduction to robots.txt 2019). Students can easily get what they need from

the robots.txt file, i.e. whether the website allows for scraping, using the

robotstxt package and specifically the paths_allowed function in this package

(?).

robotstxt::paths_allowed("https://opensecrets.org")

[1] TRUE

Indeed, we are allowed to scrape data from this website. Here we consider

being “allowed” to scrape from a technical point of view but will expand it

further in the Discussion Section.

3.1 Level 1: Scraping a table from a single website

We start off by presenting a simple data scraping exercise that involves

grabbing data from a table from a single webpage on OpenSecrets.org which

contains information on foreign-connected PAC donations in the 2020 election

cycle. What makes this exercise “simple” is that the data are already in tabular

form so the students have an expectation of what it will look like in an R data

frame. Additionally, the rvest package has a function for scraping data from an

HTML table all at once and saving it as a data frame in R, so the

programming component of the task is quite straightforward.

First, we load the rvest package, and read the data from the webpage by

passing the URL of the page to the read_html() function from the rvest

package. We’ll save the result to an object called page. URL <-

"https://www.opensecrets.org/political-action-committees-

pacs/

foreign-connected-pacs?cycle=2020"

page <- read_html(url)

Acc
ep

te
d

M
an

us
cr

ipt

We then inspect this page object, a list in R, to give students a sense of the

overall structure of an HTML page.

page

{html_document}

<html class="no-js" lang="en" dir="ltr">

[1] <head>\n<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8 ...

[2] <body>\n\n <!-- Google Adsense Script -->\n

<script async src="//pa ...

As shown in Figure 3, each HTML document is comprised of two parts: a

declarative header section (denoted as head) and a body containing the

document’s actual content. With read_html() these two parts are read in as

the two elements in the page list in R.

If you are writing raw HTML to create a webpage it is important to understand

the HTML tree because CSS selectors use this tree. However if you simply

want to parse the data from the HTML code of a page in order to extract

elements of interest for your analysis (like we’re doing here), browsing

through the entire HTML tree to find relevant elements is inefficient, both

practically and pedagogically. This is where the SelectorGadget comes into

play. We can use the SelectorGadget to figure out the appropriate CSS

selectors for elements of interest. Figure 4 shows how we can use the

SelectorGadget to identify the CSS selector for the table of contributions on

the page. If clicked on the table, the SelectorGadget highlights the table in

yellow, and shows the CSS selector associated with it, .DataTable on the

bottom right. We note that since this starts with a period, it is a CSS class,

and use this tag as part of our web scraping code.

Finally, we use the tag identified using the SelectorGadget to extract the

relevant node from the HTML page we have already read into R.

Page %>%

Acc
ep

te
d

M
an

us
cr

ipt

html_node(".DataTable") %>% # extract node containing

table

html_table("td",

header = TRUE,

fill = TRUE) %>% # extract the table

as_tibble() # convert to tibble

A tibble: 225 x 5

‘PAC Name (Affiliate)‘ ‘Country of Origin/Pa~ Total

Dems Repubs

<chr> <chr> <chr> <chr> <chr>

1 "7-Eleven\n ~ Japan/Seven & I Holdi~ $1,000 $0

$1,000

2 "ABB Group\n ~ Switzerland/Asea Brow~ $8,000 $3,5~

$4,500

3 "Accenture\n ~ Ireland/Accenture plc $82,0~ $49,~

$33,0~

4 "Air Liquide America\n ~ France/L’Air Liquide ~

$14,0~ $5,0~ $9,000

5 "Airbus Group\n ~ Netherlands/Airbus Gr~ $159,~

$66,~ $93,0~

6 "Alkermes Inc\n ~ Ireland/Alkermes Plc $77,2~ $25,~

$51,5~

7 "Allianz of America\n ~ Germany/Allianz AG Ho~

$46,5~ $19,~ $27,1~

8 "Anheuser-Busch\n ~ Belgium/Anheuser-Busc~ $252,~

$127~ $125,~

9 "AON Corp\n ~ UK/AON PLC $45,0~ $17,~ $27,5~

10 "APL Maritime\n ~ France/CMA CGM SA $1,000 $1,0~ $0

... with 215 more rows

Now that we have our data in R, we can walk the students through a few

steps of data cleaning and text parsing (e.g. rename variable names, remove

Acc
ep

te
d

M
an

us
cr

ipt

trailing spaces, etc.). We also recommend adding a new column to this data

frame that records the year the data come from, since this information is not

represented elsewhere in the data frame. Once the data cleaning is

completed, we write out the data to a CSV file. We want students to get into

the habit of writing out data they scraped so they don’t have to scrape it over

and over again, and also so that they have a record of the data in case it

changes or the website goes down.

In an introductory statistics course this might be all the web scraping the

curriculum can spare time for. At this point students are equipped with the

skills to scrape tabular data off the web, save it as a data frame in R, and also

to save it as a CSV file to be used later. Depending on what else the course

covers, they can then visualize or summarize this data, or build models with it.

3.2 Level 2: Writing functions

In an introductory data science course where foundational programming skills

like writing functions might be a learning goal, we can use this web scraping

exercise to motivate the need for functionalizing code and to demonstrate how

to write functions. The code developed in the previous section can be placed

in a function that takes the URL of the page as an input, and then easily

applied to URLs for contributions from other years. Pseudocode for such a

function is given below.

scrape_pac <- function(url){

scrape data from the given url

clean the scraped data

return resulting data frame

}

Using data scraped from a few years with this function, students can do

analyses where they compare contributions from certain countries or

companies between different years.

3.3 Level 3: Iteration

Acc
ep

te
d

M
an

us
cr

ipt

Teaching functions to facilitate repeating the web scraping task across

multiple years opens the door for introducing the idea of iteration to scrape

data from all available years. Certainly this can be done by running the

function above twelve times (for the twelve years worth of data on

OpenSecrets) but this is neither satisfying, nor recommended. There are two

entirely valid computational approaches for automating this task: one is using

for loops and the other is using functional programming to map the function

the students have already developed over a list of all URLs to be scraped. In

our courses we choose to present the latter approach since it is made easier

using the purrr package, which is also part of the tidyverse (Henry

and Wickham 2020). The map_dfr() function from this package is a great fit

for this task since it maps a function over a list of elements, and saves the

result as a data frame.

pac_all <- map_dfr(urls, scrape_pac)

The function we are mapping is the scrape_pac() function we developed

earlier, and the list of urls can be constructed using the fact that the URL for

each year starts with the same text string, and then has the year appended at

the end.

root <- "https://www.opensecrets.org/political-action-

committees-pacs/

foreign-connected-pacs?cycle="

year <- seq(from = 1998, to = 2020, by = 2) URLs <-

paste0(root, year)

The resulting data frame, called pac_all, includes data from each year in a

single data frame.

This exercise is appropriate for any course that covers material presented in

Level 2, however it should be noted that introducing iteration and basic

functional programming will require additional time. We usually devote at least

one lecture to introducing these concepts as well as additional readings and

Acc
ep

te
d

M
an

us
cr

ipt

an assignment that has them repeat a similar task on a different webpage to

give the students an opportunity to practice.

3.4 Level 4: Data cleaning and visualization

Finally students can analyze all foreign-connected PAC contribution data.

Figure 5 presents the result of one such analysis where we explore the

contributions from PACs connected to the United Kingdom to the Democratic

and Republican parties over time.

Creating such a figure requires a series of data manipulation steps,

e.g. filtering for PACs from the UK, summarizing yearly total contributions,

reshaping the data from wide to long format, prior to creating the visualization.

Most importantly, it communicates to students that acquiring web scraping

skills can open doors to data insights that would otherwise be impossible or

incredibly tedious to complete. While this exercise is presented as Level 4, it

does not actually require a higher skill. In courses where Levels 2 or 3 may

not fit in the curriculum, instructors can scrape the full dataset and give it to

their students so that they can work on the visualization task even if they don’t

go through the entire data scraping cycle themselves.

4 Challenges

There are four main challenges in teaching web scraping.

The first challenge with teaching web scraping in the classroom is the difficulty

of reproducibility. There are two main reasons for this. First, the data is not

static, so even if you use the same code to scrape the data at a later time, you

will get different results if the source data on the website you are scraping has

been updated. Consider scraping data on rental houses in your local region

and quantifying the relationship between size and price. Then consider

repeating this task a month later. Your results will certainly change with data

on new houses going on the rental market, and you may not be able to

observe certain characteristics you observed before with new data

(e.g. outliers). If the goal later in time is to explore the same data as earlier,

this challenge can be overcome by saving the original website source and

Acc
ep

te
d

M
an

us
cr

ipt

not-rescraping at a later time. Depending on the complexity of the web

scraping task this can be as simple as saving the HTML source read into R as

an RDS file, or it can be much more challenging. It also requires a manual

step of remembering to save this result, which can be a challenge for students

new to web scraping. However often times this challenge in itself can present

an opportunity to discuss the dynamic nature of data, which can bring a fresh

perspective to how students think about data.

Another reason for the lack of reproducibility is that websites change their

structure over time, and code that once worked to scrape a website might no

longer work. There is no quick fix for overcoming this challenge, but it is likely

that the updates to the code that need to be made to adapt to the new website

structure will not be as challenging a task as writing web scraping code from

scratch. We suggest that instructors communicate these challenges around

reproducibility early on, as opposed to waiting for their students to come upon

them and get frustrated.

A second challenge is handling of missing data. Since missing data is a

common challenge for anyone working with data, many statistical methods

and algorithms have been developed to enable estimation in the presence of

missing data. However, in the case of web scraping, the challenge with

missing data is not necessarily an estimation problem but instead a data

retrieval problem. To distinguish the two, we will call the latter a missing node

problem. Consider a Craigslist page with 10 rental homes. We can scrape

information from this page on the characteristics of each house, such as

number of bedrooms, number of bathrooms, and square footage. These three

characteristics are represented next to each other on the website. Suppose

that we are using a method for web scraping that retrieves information on

each of these variables individually and stores them as vectors. If we have all

three pieces of information on all 10 houses on the page, we would end up

with three vectors (one for each variable), each of length 10 (one element for

each house). We can then column bind these vectors together to make a data

frame of 10 rows and 3 columns to be used in our analysis. However,

assuming that all the houses would have information on all three

Acc
ep

te
d

M
an

us
cr

ipt

characteristics is wishful thinking, especially on a website like Craigslist where

the information on each house is manually entered by the person posting the

rental listing. Suppose square footage information is missing for one of the

houses. Then, the vector with the square footage information would only have

9 elements, rather than having ten elements with one of them being NA. It

would be impossible to know where the NA value in the vector is without doing

additional manual work. In addition, it would not be possible to combine the

three vectors with lengths of 10, 10, and 9. We believe that, the best approach

is to avoid using web pages that are likely to have missing nodes in the

introductory classroom. Not only retrieval of the missing nodes would be hard

but also students are less likely to be equipped to handle missing data. Note

that web pages have nested structures as previously shown in Figure 3. Even

though bedroom, bathroom, and square footage all have their unique nodes,

they also have a higher node that combines the three. For more advanced

courses, missing nodes can be retrieved by scraping a node in the higher

nested structure and then by using string manipulation.

A third challenge is the need for instructors to be aware that they have no

control of the web. Thus it is important to note potential issues related to

connectivity and content. For example, in one of our classes, students were

assigned to scrape data on college basketball matches from a specific

website as part of their homework. However, while students were working on

the homework, the server of the website went down, and it was impossible for

the students to complete the homework. We had to push the homework

deadline until after the website was up and running again, but this was a less

than ideal solution. Thus we recommend that instructors be ready to provide

alternatives or extensions in such cases. One potential remedy is to save the

source code of the website and host it on a local web server that the instructor

has control over. However this task may not be trivial if the website is

complex, and there may also be legal considerations around re-hosting

source code, even for educational purposes.

Even though instructors do not have control over connectivity on the server

side, they do have control over connectivity on the user side, and they should

Acc
ep

te
d

M
an

us
cr

ipt

be mindful of it. Each time a student is scraping off the web, as a user they

send a request to the server to get information over the web page. If they are

working with an iterative case such as in the level 3 of the aforementioned

example, then each student would be sending multiple requests for multiple

web pages. If this is happening in a classroom setting, multiple students

would be sending multiple requests to the same server. Web servers only

allow certain number of requests per second and thus the server will either

ban requests or slow down the speed of information retrieval. Even though

web scraping can provide large amounts of data for the data science

classroom, the speed will matter and differ.

An important step is to consider the amount that is being scraped. Does the

whole set of data really need to be scraped to achieve the learning goals of

the class? For instance, Internet Movie Database (IMDB) has 11,905 (as of

November 26, 2019) featured movie titles from 2018 and information on

rating, number of votes, domestic gross and many other features of the

movies are provided (IMDB 2019). Each web page has 50 movies and if one

were to scrape all the movies the code has to iterate over 239 web pages. If

the goal is to teach how to scrape and iterate over web pages, the goal can

easily be achieved by iterating over a much smaller number of web pages.

For example, if students can scrape data from the first three web pages, they

can scrape from 239 web pages assuming that page structures are similar.

They just need to be aware that the larger task will take a longer time. Another

approach to lowering the amount of data scraped can also be taking a sample

either in random sample format or in random clusters where each web page

would be a cluster and this would be a computationally easier solution and

statistically a more interesting one.

Finally, a fourth challenge is that instructors do not have control over the

content of the web. We can divide content into two as data maintained by staff

affiliated with the website vs. data input by users. Consider IMDB where

information about movies are retrieved from a database that is maintained by

IMDB itself. Even though users can add movie titles and information related to

a movie, IMDB staff spend time to review the user submissions. Now consider

Acc
ep

te
d

M
an

us
cr

ipt

Craigslist, a website where anyone can submit anything, and there is minimal

monitoring of data entry. For instance, you may find a house with 1000

bedrooms and that is only 2 square feet. Such data entry problems are not

limited to web scraping and can be faced even with traditional data collection

tools such as pen and paper. Even though we list this as a challenge, we also

believe this can be considered an opportunity for data cleaning. Instructors

need to take their students’ level into account to decide whether the students

should be faced with this challenge or not. If the time is limited and the goal is

to complete a specific analysis, tasks where web scraping is done on pages

like IMDB may be more appropriate. However, if the goal is data cleaning,

exercises like scraping data off of Craigslist would turn this challenge into an

opportunity. Data that requires a lot of cleaning may also be considered as

outside of class activity at more advanced levels.

5 Opportunities

The biggest opportunity web scraping brings to the classroom is the data

itself. The web offers data that is current and interesting. In the past,

traditional statistics courses have been mainly taught with toy datasets that

are clean and have few variables, often the only variables needed for a

specific analysis. More recently, many statistics courses have adopted the

use of real and current data, even if the data sets may have been tamed

slightly to help demonstrate particular models or methods. An instructor with

web scraping skills can incorporate truly timely data into their curriculum,

which can enrich the data repository of any course. And since web data often

come with the story of why the data were collected in the first place,

instructors can share these stories with the students to provide motivation

(Grimshaw 2015).

Without web scraping skills, students are limited to hand scraping or to

datasets that already come in as CSV or Excel files. In some situations, such

files might contain exactly the data students want. But in many situations,

being limited to data that is already presented in a structured format can limit

students’ options, and their data analysis projects might be driven by the

Acc
ep

te
d

M
an

us
cr

ipt

availability of structured data instead of what they really want to investigate.

Even though the examples we have provided in this paper target the learner,

web scraping is also an important tool for the instructor, who is essentially the

lead learner.

Further to content of the data, size, shape, and the format of the data are

another opportunity. As suggested by Horton et al. (2015), integration of

experiences with large, complex, and messy datasets that don’t come in a

rectangular data matrix is an important consideration for a statistics

curriculum, and web scraping can provide an opportunity to do all of this.

While the Open Secrets example we provided earlier used data that came in a

tabular format, it is very common for a web scraping exercise to feature

harvesting data that is scattered around a page and cannot be extracted as a

table. Regardless of whether the data comes in a tabular format or not, web

data often requires post-processing, e.g. text parsing, data cleaning,

reshaping, etc. to prepare it for statistical analysis. It also exposes students to

file formats beyond the standard CSV and Excel files (e.g. HTML, JSON, and

XML) as well as to the idea of “text as data” which can pave the way to further

data science topics like sentiment analysis. For example, in one of our

classes, for their final project, a student had scraped song lyrics of their

favorite band and had done a sentiment analysis of the song lyrics.

Another important opportunity that web scraping brings to the data science

classroom is blending computing and statistics topics through problem

solving, rather than using hypothetical scenarios. Consider level 2 of the

example provided above, where we introduce the concept of writing functions.

In this situation, the function solves a real problem (getting data off a webpage

given its URL) as opposed to a toy one (e.g. adding one to its argument). Two

additional computing topics that often come up in web scraping are iteration,

as seen in level 3 of the example, and string manipulation.

Finally, for those of us who teach with R Markdown files, web scraping

provides an opportunity to introduce R scripts with a clear motivation for not

Acc
ep

te
d

M
an

us
cr

ipt

using R Markdown. Code for web scraping functions and saving the scraped

data as CSV files go into R scripts – this code is run only once. Then, the data

analysis (visualizations, summarizations, modeling, etc.) is completed in R

Markdown documents that begin with reading data from the CSV files they

created – this code gets re-run every time the R Markdown document is knit.

This process presents two opportunities: (1) discussing valid reasons for not

wanting to run certain types of code each time we knit an R Markdown

document (we don’t want to keep hitting the web servers of the page we are

scraping), and (2) introducing students to file formats other than R Markdown

for writing reproducible code, which leads the way to teaching good workflow

practices.

Last but not least, an important aspect of teaching web scraping is the

discussion of ethics that it brings to the classroom. Awareness of ethical

issues is one of the nine goals in the latest GAISE College report (2016) and

others have been thinking about inclusion of ethics in the statistics and data

science curriculum as well (Baumer et al. 2020). A common misconception

surrounding using web data is that if the data is publicly available, it can be

scraped. Our approach to handling this misconception in the classroom is

three-fold. When scraping data, one should take into account whether the

server allows for bots to access the web page. In the aforementioned example

this was achieved by using the paths_allowed() function from the robotstxt

package.

The second point to consider is privacy and consent when the data is about

human subjects. A popular web scraping controversy was about data scraped

from OkCupid, an online dating website, by a group of scientists, and provided

on PyschNet, an open science community. The data included usernames and

potentially sensitive information such as drug use, political affiliation, and

sexuality (Woollacott 2016). Considering that an important portion of data on

the web comes from users, we suggest that instructors make students aware

of the distinction of human subjects and non-human subjects and possibly

introduce them to Institutional Review Boards at their institutions briefly, if not

already done so.

Acc
ep

te
d

M
an

us
cr

ipt

The third point we also consider is the legality of web scraping. The laws

regarding web scraping are not yet set in stone and the law arena about web

scraping remains unclear (Zamora 2019). There are two popular cases that

instructors can bring up as examples in the classroom. The first is a dispute

between EBay and Bidder’s Edge in 2000 when a court decided to ban Bidder

’s Edge scraping data from EBay. The second is a more recent case of a

dispute between LinkedIn and HiQ where the court decided that scraping

publicly available information from LinkedIn is not same as hacking, however

there may be copyright infringement (Robertson 2019). As law is catching up

with data practices, the way we teach web scraping in the future will be

shaped by legal practices. It is important for instructors to make students

aware that having technical skills to scrape data does not necessarily mean

they should or they are allowed to scrape. This distinction is really important.

6 Discussion

We cannot envision a data science curriculum without web scraping. In this

paper we attempted to communicate this vision by first placing web scraping

within the statistics and data science education landscape. Then, we

presented a web scraping activity at varying levels of difficulty for the data

science classroom. Based on our teaching experience, we provided potential

challenges of teaching web scraping and how to overcome them. We also

described in detail what opportunities web scraping brings to the data science

classroom. When the challenges are overcome, the opportunities provide

meaningful learning experiences for the learner. We encourage statistics and

data science instructors to teach web scraping.

Over the last five years, we have taught web scraping as part of many

courses and in different institutions including, small liberal arts colleges, large

private and public research universities. On 14-15 week semester systems, at

the undergraduate level, we have taught web scraping in introductory data

science, data analytics, and statistics courses (algebra-based) as well as in

secondary (algebra-based) linear models courses. In 10-11 week quarter

systems, we were unable to cover web scraping in (calculus-based)

Acc
ep

te
d

M
an

us
cr

ipt

introductory probability and statistics courses, however we were able to cover

it in introductory data science courses. We have experimented with teaching

web scraping towards the end of the term (in the last 3-4 weeks), after

students have gained a good amount of computational experience, as well as

mid-semester (around week 5), immediately after data visualization and

wrangling units, so that students could use their newly acquired skills in

putting together their final project proposals.

In this paper, we focused on scraping data from its source code. In addition to

source code, some websites offer application programming interfaces (APIs)

through which data can be accessed. One option for introducing harvesting

data from the web via an API is to use an R package that provides a set of

functions to communicate with that API, e.g. rtweet for accessing Twitter’s

REST and stream APIs (Kearney 2019), ZillowR for accessing Zillow’s Real

Estate and Mortgage Data API (Brantley 2016), and genius for accessing

song lyrics via the Genius API (Parry 2019). Working with web APIs using

packages like these can be introduced at any level as the package functions

simplify the tasks to be no more complicated than working with the rvest

package for scraping HTML data. For a more thorough treatment of working

with web APIs, we would recommend teaching this process after web

scraping. For example, OpenSecrets has an API so one could extend the

example provided above to replicate the same analysis by fetching the data

via their API. This is not a computationally much more complicated task,

however it does require introducing the concept of hierarchical data and new

data types – most likely JSON or XML. There are numerous R packages for

parsing such data and flattening them into a rectangular data frames, which

can then be used as starting point for an analysis like the one we exemplified

above. Having worked with web data previously will help students as they

learn these new concepts and tools, and hence we recommend introducing

working with web APIs either in upper-level courses or earlier computational

courses where learning goals include working with hierarchical data.

As demonstrated in Section 3, the specific web scraping topics we cover

depend on the level of the course. Table 1 summarizes how we sort these

Acc
ep

te
d

M
an

us
cr

ipt

topics into courses at various levels and also into computational and statistical

categories. From a computing perspective, with the help of SelectorGadget, at

the most basic level web scraping can be taught as soon as students are able

to use R functions from multiple packages. However, we believe that web

scraping activities are more effective when students gain some maturity

working with data so that they have enough statistical knowledge to make

meaning of the data that they scrape. For instructors who are new to web

scraping, in addition to the elementary topics that we have listed for students,

we also recommend a basic understanding of HTML and CSS as we have

outlined in Section 2.1. Instructors who are novice web scrapers should avoid

teaching on the spot and fully write the code for scraping activity before

teaching students.

Even though we do not have experience teaching the topic at the graduate

level or advanced undergraduate levels, we believe that at these levels web

scraping will also provide an opportunity to expose students to working with

web APIs and hierarchical data retrieved from them (JSON and XML files) as

well as further details of HTML and CSS.

For instructors who are interested in adopting web scraping activities in their

teaching, we provide the following set of questions as a starting point to

consider when deciding on which website to scrape from:

 Is the data from human subjects? If yes, is it ethical to scrape the data?

 Does the website provide an API?

 Does the website allow web scraping?

 Are the data provided in an HTML table?

 Are the CSS Selectors easy to select with SelectorGadget?

 Is there non-numeric data? If yes, how easy is it to manipulate it?

 Would the process of scraping involve iteration over multiple pages? If

yes, how much data are you planning to scrape, all or a sample?

We presented a brief introduction to web scraping using R for HTML parsing.

However, the world of web scraping is richer than what we could provide here

Acc
ep

te
d

M
an

us
cr

ipt

as examples. For example, many of the pedagogical opportunities and

challenges we discussed would also apply to doing web scraping in Python,

using a package like Beautiful Soup (Richardson 2007). Additionally, the

example we presented used a specific combination of technologies – a

Chrome browser with the SelectorGadget extension, and the rvest and

tidyverse packages. While we believe that this set of tools are the best choice

for web scraping in R, from both pedagogical and technical perspectives,

there are many other combinations of tools one could use to accomplish the

same results in R. The tools for web scraping get richer every day as the need

for harvesting data off the web efficiently and effectively grows, but the

pedagogical considerations presented in this paper as well as the technical

tooling should stay relevant for the foreseeable future.

References

AutonomIQ (2019), ‘ChroPath for Firefox 5.0.9’, https://addons.mozilla.org/en-

US/firefox/addon/chropath-for-firefox. Accessed: 2019-12-13.

Bache, S. M. and Wickham, H. (2014), magrittr: A Forward-Pipe Operator for

R. R package version 1.5. URL: https://CRAN.R-project.org/package=magrittr

Baumer, B. S., Garcia, R. L., Kim, A. K., Kinnaird, K. M. and Ott, M. Q. (2020),

‘Integrating data science ethics into an undergraduate major’, arXiv preprint

arXiv:2001.07649v1 .

Brantley, J. (2016), ZillowR: R Interface to Zillow Real Estate and Mortgage

Data API. R package version 0.1.0. URL: https://CRAN.R-

project.org/package=ZillowR

Cantino, A. and Maxwell, K. (2013), ‘SelectorGadget: point and click CSS

selectors’, https://selectorgadget.com. Accessed: 2019-12-12.

Cobb, G. (1992), Teaching statistics, in L. A. Steen, ed., ‘Heeding the Call for

Change Suggestions for Curricular Action’, The Mathematical Association of

America, Oxford, chapter 1, pp. ”3–43”.

Acc
ep

te
d

M
an

us
cr

ipt

https://addons.mozilla.org/en-US/firefox/addon/chropath-for-firefox
https://addons.mozilla.org/en-US/firefox/addon/chropath-for-firefox
https://selectorgadget.com/

Destatis (2018), ‘Methods – approaches – developments’.

Distil Networks (2016), ‘Economics of web scraping report’.

Dumbacher, B. and Capps, C. (2016), Big data methods for scraping

government tax revenue from the web, in ‘Proceedings of the Joint Statistical

Meetings, Section on Statistical Learning and Data Science’, pp. 2940–2954.

GAISE (2005), ‘Guidelines for assessment and instruction in statistics

education (GAISE): College report’. URL:

http://www.amstat.org/education/gaise

GAISE (2016), ‘Guidelines for assessment and instruction in statistics

education (GAISE): College report’. URL:

http://www.amstat.org/education/gaise

Google (2019), ‘Googlebot’,

https://support.google.com/webmasters/answer/182072?hl=en. Accessed:

2019-11-27.

Grimshaw, S. D. (2015), ‘A framework for infusing authentic data experiences

within statistics courses’, The American Statistician 69(4), 307–314.

Hardin, J., Hoerl, R., Horton, N. J., Nolan, D., Baumer, B., Hall-Holt, O.,

Murrell, P., Peng, R., Roback, P., Temple Lang, D. et al. (2015), ‘Data science

in statistics curricula: Preparing students to “think with data”’, The American

Statistician 69(4), 343–353.

Henry, L. and Wickham, H. (2020), purrr: Functional Programming Tools. R

package version 0.3.4. URL: https://CRAN.R-project.org/package=purrr

Hicks, S. C. and Irizarry, R. A. (2018), ‘A guide to teaching data science’, The

American Statistician 72(4), 382–391.

Horton, N. J., Baumer, B. S. and Wickham, H. (2015), ‘Setting the stage for

data science: integration of data management skills in introductory and

Acc
ep

te
d

M
an

us
cr

ipt

https://support.google.com/webmasters/answer/182072?hl=en

second courses in statistics’, Chance . URL:

https://chance.amstat.org/2015/04/setting-the-stage

IMDB (2019), ‘Feature film, released between 2018-01-01 and 2018-12-31

(sorted by number of votes descending)’,

https://www.imdb.com/search/title/?title_type=feature&year=2018-01-01,2018-

12-31&sort=num_votes,desc. Accessed: 2019-11-11.

Introduction to robots.txt (2019),

https://support.google.com/webmasters/answer/6062608?hl=en. Accessed:

2019-11-27.

Kearney, M. W. (2019), ‘rtweet: Collecting and analyzing twitter data’, Journal

of Open Source Software 4(42), 1829. R package version 0.7.0. URL:

https://joss.theoj.org/papers/10.21105/joss.01829

Loy, A., Kuiper, S. and Chihara, L. (2019), ‘Supporting data science in the

statistics curriculum’, Journal of Statistics Education 27(1), 2–11.

Neumann, D. L., Hood, M. and Neumann, M. M. (2013), ‘Using real-life data

when teaching statistics: student perceptions of this strategy in an introductory

statistics course.’, Statistics Education Research Journal 12(2), 59–70.

Nolan, D. and Lang, D. T. (2010), ‘Computing in the statistics curricula.’, The

American Statistician 64(2), 97–107.

Nolan, D. and Lang, D. T. (2014), XML and web technologies for data

sciences with R, Springer.

Open Secrets - Foreign Connected PACs (2019),

https://www.opensecrets.org/political-action-committees-pacs/foreign-

connected-pacs. Accessed: 2019-11-27.

OpenSecrets.org (2019), https://www.opensecrets.org. Accessed: 2019-11-

27.

Acc
ep

te
d

M
an

us
cr

ipt

https://www.imdb.com/search/title/?title_type=feature&year=2018-01-01,2018-12-31&sort=num_votes,desc
https://www.imdb.com/search/title/?title_type=feature&year=2018-01-01,2018-12-31&sort=num_votes,desc
https://support.google.com/webmasters/answer/6062608?hl=en
https://www.opensecrets.org/political-action-committees-pacs/foreign-connected-pacs
https://www.opensecrets.org/political-action-committees-pacs/foreign-connected-pacs
https://www.opensecrets.org/

Parry, J. (2019), genius: Easily Access Song Lyrics from Genius.com. R

package version 2.2.0. URL: https://CRAN.R-project.org/package=genius

Poggi, N., Berral, J. L., Moreno, T., Gavalda, R. and Torres, J. (2007),

Automatic detection and banning of content stealing bots for e-commerce, in ‘

NIPS 2007 workshop on machine learning in adversarial environments for

computer security’, Vol. 2.

Polidoro, F., Giannini, R., Conte, R. L., Mosca, S. and Rossetti, F. (2015), ‘

Web scraping techniques to collect data on consumer electronics and airfares

for Italian HICP compilation’, Statistical Journal of the IAOS 31(2), 165–176.

Richardson, L. (2007), ‘Beautiful soup documentation’.

Robertson, A. (2019), ‘Scraping public data from a website probably isn’t

hacking, says court’, https://www.theverge.com/2019/9/10/20859399/linkedin-

hiq-data-scraping-cfaa-lawsuit-ninth-circuit-ruling. Accessed: 2019-11-11.

Statistics Canada (2019), ‘Web scraping’, https://www.statcan.gc.ca/eng/our-

data/where/web-scraping. Accessed: 2019-11-11.

Stiving, M. (2017), B2b pricing systems: proving ROI, in ‘Innovation in Pricing’,

Routledge, pp. 137–144.

Ten Bosch, O., Windmeijer, D., van Delden, A. and van den Heuvel, G.

(2018), Web scraping meets survey design: Combining forces, in ‘Big Data

Meets Survey Science Conference, Barcelona, Spain’.

Wickham, H. (2014), ‘Tidy data’, Journal of Statistical Software 59(10), 1–23.

Wickham, H. (2019 a), rvest: Easily Harvest (Scrape) Web Pages. R package

version 0.3.5. URL: https://CRAN.R-project.org/package=rvest

Wickham, H. (2019 b), stringr: Simple, Consistent Wrappers for Common

String Operations. R package version 1.4.0. URL: https://CRAN.R-

project.org/package=stringr

Acc
ep

te
d

M
an

us
cr

ipt

https://www.theverge.com/2019/9/10/20859399/linkedin-hiq-data-scraping-cfaa-lawsuit-ninth-circuit-ruling
https://www.theverge.com/2019/9/10/20859399/linkedin-hiq-data-scraping-cfaa-lawsuit-ninth-circuit-ruling
https://www.statcan.gc.ca/eng/our-data/where/web-scraping
https://www.statcan.gc.ca/eng/our-data/where/web-scraping

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,

R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen,

T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel,

D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K. and Yutani,

H. (2019), ‘Welcome to the tidyverse’, Journal of Open Source Software

4(43), 1686.

Woollacott, E. (2016), ‘70,000 OkCupid profiles leaked, intimate details and all

’, https://www.forbes.com/sites/emmawoollacott/2016/05/13/intimate-data-of-

70000-okcupid-users-released/47645bf1e15d. Accessed: 2019-11-11.

Zamora, A. (2019), ‘Making room for big data: Web scraping and an

affirmative right to access publicly available information online’, Journal of

Business, Entrepreneurship and the Law 12(1), 203 –228.

Acc
ep

te
d

M
an

us
cr

ipt

https://www.forbes.com/sites/emmawoollacott/2016/05/13/intimate-data-of-70000-okcupid-users-released/47645bf1e15d
https://www.forbes.com/sites/emmawoollacott/2016/05/13/intimate-data-of-70000-okcupid-users-released/47645bf1e15d

Fig. 1 HTML document example

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 2 HTML document with CSS example

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 3 Partial HTML tree of HTML and CSS example

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 4 Identifying the CSS selector for the table of contributions using the

SelectorGadget. Retireved on April 30, 2020.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 5 Example analysis: visualization of contributions from PACs connected

to the UK to the Democratic and Republican parties over time.

Acc
ep

te
d

M
an

us
cr

ipt

Table 1 An overview of statistics and computing topics in the web scraping

classroom

 Computational Topics and Tools

Statistical Topics and

Tools

Elementary

Using functions from different

packages Data Visualization

 SelectorGadget Exploratory Data Analysis

Intermediat

e Writing Functions Sampling

 Iteration Statistical Inference

 String manipulation Statistical Modeling

 Text analysis

Advanced APIs Handling Missing Data

 HTML and CSS

 Hierarchical data (JSON, XML)

Notes

1 The GitHub repository can be found at {https://github.com/mdogucu/web-

scrape}

2 The RStudio Cloud project can be found at

{https://rstudio.cloud/project/797118}.

Acc
ep

te
d

M
an

us
cr

ipt

file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/github.com/mdogucu/web-scrape%7d
file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/github.com/mdogucu/web-scrape%7d
file://CHENAS03.cadmus.com/SmartEdit/WatchFolder/JustAccepted/PDF/IN/WordDocument/%7bhttps:/rstudio.cloud/project/797118%7d%7b%7d

