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Abstract 
Best practices in statistics and data science courses include the use of real and 
relevant data as well as teaching the entire data science cycle starting with importing 
data. A rich source of real and current data is the web, where data are often 
presented and stored in a structure that needs some wrangling and transforming 
before they can be ready for analysis. The web is a resource students naturally turn 
to for finding data for data analysis projects, but without formal instruction on how to 
get that data into a structured format, they often resort to copy-pasting or manual 
entry into a spreadsheet, which are both time consuming and error-prone. Teaching 
web scraping provides an opportunity to bring such data into the curriculum in an 
effective and efficient way. In this paper we explain how web scraping works and how 
it can be implemented in a pedagogically sound and technically executable way at 
various levels of statistics and data science curricula. We provide classroom 
activities where we connect this modern computing technique with traditional 
statistical topics. Lastly, we share the opportunities web scraping brings to the 
classrooms as well as the challenges the instructors and tips for avoiding them. 

Keywords: Web scraping, R language, teaching, curriculum, data science 

1 Introduction 

From rental housing prices to daily weather temperatures, the world wide web 

is a great resource for locating real and current data for the statistics and data 

science classrooms. Inclusion of authentic data experiences has been at the 

core of recommendations for statistics curricula for many years including the 

GAISE College reports (GAISE 2005, 2016) as well the earlier version of 

these recommendations in the Cobb (1992) report. Prior research suggests 

that students’ perceptions of statistics being relevant in real life is associated 
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with use of real data in the statistics classroom and students find the course 

interesting when real data is used (Neumann et al. 2013). 

With or without the instructors’ intent to rely on the web as the source of data, 

many novice learners often turn to the web to locate real data for class 

projects. Without any formal training on retrieving data from the internet in an 

automated fashion, they often rely on hand scraping which consists of 

manually entering the data into a spreadsheet or copy-pasting. Both of these 

methods are time consuming and error-prone. In contrast, web scraping 

techniques allow students to gather unstructured information from the internet 

and convert it into a structured form in a rectangular fashion that meets tidy 

principles (Wickham 2014). Web scraping is the process of extracting data off 

the web programmatically and transforming it into a structured dataset. Web 

scraping allows for larger amounts of data to be collected in a shorter span of 

time and in an automated fashion that minimizes errors. 

There are two types of web scraping. The first is screen scraping, where you 

extract data from source code of a website, with an HTML parser or regular 

expression matching. The second is using application programming 

interfaces, commonly referred to as APIs. This is where a website offers a set 

of structured HTTP requests that return JSON or XML files. In this paper we 

focus on the former, however we note that prior to going down the screen 

scraping path, it’s recommended to first check if a website offers an API to 

access their data. 

In addition to being helpful for gathering data for class projects, web scraping 

as a skill has benefits for the student, regardless of whether their career 

trajectory involves working in industry, government, or academia. For 

example, many national statistical agencies started relying on web scraping 

as a form of data collection, including the Italian National Institute of Statistics, 

ISTAT (Polidoro et al. 2015), the Federal Statistical Office of Germany, 

Destatis (Destatis 2018), and Statistics Netherlands (Ten Bosch et al. 2018). 

One widespread way such agencies use web scraping is in automating the 

collection of prices of specific consumer products (e.g. electronics, housing, 
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and medicine) to calculate some form of index of consumer prices. Uses of 

web scraping for data collection for other purposes have also been 

considered. The United States Census Bureau is building a tool that 

automatically scrapes tax revenue collections from websites of state and local 

governments as opposed to collecting this information with a traditional 

questionnaire (Dumbacher and Capps 2016). Similarly, Statistics Canada is 

looking into ways how they can incorporate web scraping to reduce the 

burden on survey responders (2019). 

In industry, perhaps the best-known scraper is Googlebot (Google 2019) 

which scrapes data from many web pages for Google’s search engine. Web 

scraping is also often used in e-commerce. For instance, flight comparison 

websites scrape data from multiple airlines (Poggi et al. 2007). Many e-

commerce websites scrape pricing information from their competitors’ 

websites (Stiving 2017). 

With its increased use, web scraping has become an important skill in the 

work force. A simple job search (conducted on November 11, 2019) on 

LinkedIn for “web scraping” returned 234 job listings. For comparison, our 

searches on “Bayesian”, “linear models”, and “chi square” returned 1236, 259, 

and 60 job listings, respectively. Our online job search has also shown that 

web scraper is in fact a job title and not just a skill that is listed in job ads. 

Distil Networks reported a salary range up to $128,000 for web scrapers 

(2016). 

Inclusion of web scraping in the statistics and data science curriculum is not a 

novel idea. When Nolan and Temple Lang (2010) called for inclusion of 

modern computing in statistics curricula, they emphasized increase in use of 

web data and statisticians’ need to access web data. In addition, their book on 

XML and web technologies has been an important guide for data scientists 

(2014). In the last decade since their paper, as the emphasis on computing 

topics increased in statistics education, web scraping gained popularity as 

well. In a survey of seven schools that had incorporated data science topics in 

their statistics curricula, Hardin et al. (2015) reported that six of the seven 
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schools cover web scraping. More recently, in their guide to teaching data 

science Hicks and Irizarry (2018) listed web scraping and accessing web data 

via APIs as part of an introductory data science course. Similarly, Loy 

et al. (2019) developed a set of tutorials and case studies that support data 

science in the statistics curriculum and web scraping is one of the nine topics 

their projects cover. 

Needless to say, we also believe that web scraping should be in every 

statistician’s and data scientist’s toolbox and it should be included in the 

curricula. There are vignettes, tutorials, and books written on the technical 

aspects of web scraping which can help instructors learn web scraping, 

however, we were not able to locate any resources that demonstrate and 

discuss how to teach web scraping. In this paper, we introduce technical tools 

for scraping data and provide a classroom activity as a concrete example. 

Based on our teaching experiences, we discuss some of the challenges of 

teaching web scraping and offer suggestions for how these may be overcome. 

Lastly, we discuss the opportunities that web scraping brings to statistics and 

data science curricula. 

Throughout the paper, we introduce code for web scraping purposes. 

Considering length limitation of this manuscript, we provide the full code for 

analysis on a GitHub repository1. In addition, the code is provided as an 

RStudio Cloud project2 so the readers who choose to run the code while 

reading the paper may do so. Within text we provide real code when 

introducing a concept but we use pseudocode for describing the bigger 

computational ideas. 

2 Technical Tools 

2.1 HTML & CSS 

HyperText Markup Language (HTML) is the standard language behind almost 

every web document. Every web user interacts with HTML with or without 

realizing it. The main purpose of HTML is to handle content of a webpage 

such as text, hyperlinks, and images. CSS (Cascading Style Sheets) is 
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another core technology for building web pages. While HTML provides the 

structure of the page, CSS provides the styling and the layout. Instructors 

teaching web scraping do not need to be fluent in HTML and CSS to teach 

web scraping, especially in the introductory data science class. However, a 

basic knowledge of these technologies can help instructors be a ahead of 

students and understand why things work the way they do. In this section, we 

provide a brief introduction to HTML and CSS. 

Figure 1 shows a simple web page with text and hyperlinks, built using HTML. 

The code below shows the back-end of the web page in this figure. Any HTML 

element is specified with an opening (e.g. <html>) and a closing tag 

(e.g. </html>) in this case, the <html> tag signifies creation of a HTML 

document. Within an HTML document there are two major sections as head 

and body of a document, both specified with their opening and closing tags. 

The <p> tag specifies a paragraph.  

<html> 

 

<head> 

 

</head> 

 

 

<body> 

 

<p><a 

href="https://www.tandfonline.com/toc/ujse/current"> 

 

The Journal of Statistics Education</a> was established 

in 1992. 

You are currently reading a manuscript from this 

journal.</p> 

 

<p><a 

href="https://www.tandfonline.com/toc/utas20/current"> 

The American Statistician</a> was established in 

1947.</p> 

 

</body> 

 

</html>  
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The HTML code for the hyperlink for The Journal of Statistics Education is 

multifaceted. The full code 

<a href=”https://www.tandfonline.com/toc/ujse/current”>The Journal of

 Statistics Education</a> first consists of an opening and closing anchor 

tag specified with <a> and </a> respectively. This tag defines a hyperlink. 

Then the href attribute is set to a value of 

https://www.tandfonline.com/toc/ujse/current. This attribute specifies the 

destination of the hyperlink. 

Figure 2 shows a web page that uses CSS in addition to HTML. In order to 

make all the establishment dates of journals red a CSS class needs to be 

defined. In the code below a CSS class called journal-date is defined. CSS 

classes are defined in a style tag (or in a separate document) that is inside the 

head part of the HTML document. The names of CSS classes are preceded 

with a period.  

<style> 

 

.journal-date { 

 

color:red; 

 

} 

 

</style>  

Once the class is defined then it can be used in the body of the document to 

define the class of any HTML tag. The code below shows how to alter the 

color of the establishment year for Journal of Statistics Education.  

<span class="journal-date">1992</span>  

The rest of the styling in this web page is constructed in a similar fashion. We 

summarize the structure of this web page with a partial document tree in 

Figure 3. In this figure, we eliminated the elements of the head tag and 

focused on the body tag. In the body tag, we have provided only the first 

paragraph with the Journal of Statistics Education. The structure of the 

paragraph for the American Statistician has also been eliminated from the 
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figure due to space limitations but is similar to the structure of the previous 

paragraph. The white boxes in the figure represent the text that is visible to 

the web page user and the black boxes represent nodes of the document on 

the back-end. Note that current-journal is preceded with a hashtag rather than 

a period which indicates that this is a CSS ID rather than a CSS class. CSS 

IDs are used to identify only one element in a document such as #current-

journal only making the sentence You are currently reading a manuscript 

from this journal italic. CSS classes can identify multiple elements such as 

.journal-date making multiple establishment years red. It would be possible 

to use a class and an ID or multiple classes for a single HTML element. CSS 

selectors are used to select elements to style in an HTML document. Class 

and ID are two of the many CSS selectors. Readers may find the code for 

Figure 2 provided on the GitHub repo helpful to understand CSS classes and 

IDs. 

2.2 SelectorGadget 

Basic understanding of HTML and CSS can be useful for statisticians and 

data scientists working with web data. However understanding details of 

HTML and CSS as well as a web designer needs is neither necessary nor 

feasible within the constraints of a statistics or data science curriculum. 

Additionally, for students who are new to programming as a whole, even 

locating CSS selectors for elements of a web page or reading the source code 

for a webpage can be challenging. Thus, tools with a simple graphical user 

interface for locating CSS selectors on a web page can be immensely helpful 

in the data science classroom. A popular option for such a tool is the 

SelectorGadget, an open source extension for Chrome browsers. The 

SelectorGadget homepage features a video showing how SelectorGadget can 

be used to identify CSS selectors for page elements (Cantino 

and Maxwell 2013). Similar extensions exist for other browsers as well, 

e.g. ChroPath for Firefox (AutonomIQ 2019). 

2.3 rvest package 
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The SelectorGadget helps identify the CSS selectors for certain elements in a 

webpage, and the next step is to grab these elements and import them into R, 

i.e. scrape them. We use the rvest package for accomplishing this task 

(Wickham 2019 a). 

This package makes it easy to scrape data from HTML web pages, and is 

designed to work with magrittr pipelines, which makes it a great fit for an R 

curriculum using the tidyverse suite of packages (Bache 

and Wickham 2014; Wickham et al. 2019). In a nutshell, scraping data with 

rvest involves the following steps: 

1. Read the HTML page into R with read_html() 

2. Extract nodes corresponding to elements of interest with the help of the 

SelectorGadget to identify them and functions like html_node(), 

html_table(), etc. 

3. Clean up the extracted text fields using string manipulation tools, 

e.g. functions from the stringr package (Wickham 2019 b). 

In the next section we give an example of a web scraping exercise where we 

provide details on how to use this toolkit for web scraping as well as details on 

activities and assignments that can be used in various levels of statistics and 

data science courses. 

Before we get started, let’s load the packages we will need for this example.  

library(tidyverse) 

library(rvest)  

3 Classroom Examples 

In this section we present an example where students get to work with real 

data with an international appeal, from OpenSecrets (opensecrets.org), “the 

most comprehensive resource for federal campaign contributions, lobbying 

data and analysis available anywhere” (OpenSecrets.org 2019). This website 

is a rich source of information for political data, especially election related data 

at various levels, e.g. local, state, and national elections. For this example we 
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will focus on contributions to United States elections from foreign-connected 

political action committees (PACs). The main reason why we decided to 

feature this particular data source is its international appeal – students 

anywhere in the world likely have some interest in, or at least awareness, of 

US politics and elections nowadays, though data on local elections is likely 

not as interesting to them as data that has some international connection. We 

start the assignment with the following opening paragraph to help put in 

perspective why we’re conducting this analysis: 

Every election cycle brings its own brand of excitement – and lots of money. 

Political donations are of particular interest to political scientists and other 

researchers studying politics and voting patterns. They are also of interest to 

citizens who want to stay informed of how much money their candidates raise 

and where that money comes from. 

In the United States, “only American citizens (and immigrants with green 

cards) can contribute to federal politics, but the American divisions of foreign 

companies can form political action committees (PACs) and collect 

contributions from their American employees” (Open Secrets - Foreign 

Connected PACs 2019). In this assignment we will scrape and work with data 

on foreign connected PACs that donate to US political campaigns. 

Then we go on to explain what students will actually do as part of the 

assignment. An appealing aspect of this example, from an educator’s 

perspective, is that it can be used at multiple levels, from simple table 

scraping to iteration over multiple pages. Whatever level the assignment is 

posed at, the ultimate findings are not trivial to deduce simply by interacting 

with the data on the website (e.g. by sorting tables, etc.). This feature of the 

task demonstrates the doors web scraping skills can open. 

Before we dive further into sample exercises at various levels, let’s first 

address an important concept that should be highlighted on any web scraping 

exercise at any level – checking for permission to scrape the data. This is a 

concept that can, and should, be introduced at any level without getting into 
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too much technical detail. A robots.txt file is a plain text file that lives at the 

root of a website and it consists of one or more rules, each allowing (or 

blocking) access for a given crawler to a specified file path in that website 

(Introduction to robots.txt 2019). Students can easily get what they need from 

the robots.txt file, i.e. whether the website allows for scraping, using the 

robotstxt package and specifically the paths_allowed function in this package 

(?).  

robotstxt::paths_allowed("https://opensecrets.org")  

## [1] TRUE  

Indeed, we are allowed to scrape data from this website. Here we consider 

being “allowed” to scrape from a technical point of view but will expand it 

further in the Discussion Section. 

3.1 Level 1: Scraping a table from a single website 

We start off by presenting a simple data scraping exercise that involves 

grabbing data from a table from a single webpage on OpenSecrets.org which 

contains information on foreign-connected PAC donations in the 2020 election 

cycle. What makes this exercise “simple” is that the data are already in tabular 

form so the students have an expectation of what it will look like in an R data 

frame. Additionally, the rvest package has a function for scraping data from an 

HTML table all at once and saving it as a data frame in R, so the 

programming component of the task is quite straightforward. 

First, we load the rvest package, and read the data from the webpage by 

passing the URL of the page to the read_html() function from the rvest 

package. We’ll save the result to an object called page.  URL <- 

"https://www.opensecrets.org/political-action-committees-

pacs/ 

foreign-connected-pacs?cycle=2020" 

page <- read_html(url)  
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We then inspect this page object, a list in R, to give students a sense of the 

overall structure of an HTML page.  

page 

## {html_document} 

## <html class="no-js" lang="en" dir="ltr"> 

## [1] <head>\n<meta http-equiv="Content-Type" 

content="text/html; charset=UTF-8 ... 

## [2] <body>\n\n <!-- Google Adsense Script -->\n 

<script async src="//pa ...  

As shown in Figure 3, each HTML document is comprised of two parts: a 

declarative header section (denoted as head) and a body containing the 

document’s actual content. With read_html() these two parts are read in as 

the two elements in the page list in R. 

If you are writing raw HTML to create a webpage it is important to understand 

the HTML tree because CSS selectors use this tree. However if you simply 

want to parse the data from the HTML code of a page in order to extract 

elements of interest for your analysis (like we’re doing here), browsing 

through the entire HTML tree to find relevant elements is inefficient, both 

practically and pedagogically. This is where the SelectorGadget comes into 

play. We can use the SelectorGadget to figure out the appropriate CSS 

selectors for elements of interest. Figure 4 shows how we can use the 

SelectorGadget to identify the CSS selector for the table of contributions on 

the page. If clicked on the table, the SelectorGadget highlights the table in 

yellow, and shows the CSS selector associated with it, .DataTable on the 

bottom right. We note that since this starts with a period, it is a CSS class, 

and use this tag as part of our web scraping code. 

Finally, we use the tag identified using the SelectorGadget to extract the 

relevant node from the HTML page we have already read into R. 

 

Page %>% 
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html_node(".DataTable") %>% # extract node containing 

table 

html_table("td", 

header = TRUE, 

fill = TRUE) %>% # extract the table 

as_tibble() # convert to tibble  

## # A tibble: 225 x 5 

## ‘PAC Name (Affiliate)‘ ‘Country of Origin/Pa~ Total 

Dems Repubs 

## <chr> <chr> <chr> <chr> <chr> 

## 1 "7-Eleven\n ~ Japan/Seven & I Holdi~ $1,000 $0 

$1,000 

## 2 "ABB Group\n ~ Switzerland/Asea Brow~ $8,000 $3,5~ 

$4,500 

## 3 "Accenture\n ~ Ireland/Accenture plc $82,0~ $49,~ 

$33,0~ 

## 4 "Air Liquide America\n ~ France/L’Air Liquide ~ 

$14,0~ $5,0~ $9,000 

## 5 "Airbus Group\n ~ Netherlands/Airbus Gr~ $159,~ 

$66,~ $93,0~ 

## 6 "Alkermes Inc\n ~ Ireland/Alkermes Plc $77,2~ $25,~ 

$51,5~ 

## 7 "Allianz of America\n ~ Germany/Allianz AG Ho~ 

$46,5~ $19,~ $27,1~ 

## 8 "Anheuser-Busch\n ~ Belgium/Anheuser-Busc~ $252,~ 

$127~ $125,~ 

## 9 "AON Corp\n ~ UK/AON PLC $45,0~ $17,~ $27,5~ 

## 10 "APL Maritime\n ~ France/CMA CGM SA $1,000 $1,0~ $0 

## # ... with 215 more rows  

 

Now that we have our data in R, we can walk the students through a few 

steps of data cleaning and text parsing (e.g. rename variable names, remove 
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trailing spaces, etc.). We also recommend adding a new column to this data 

frame that records the year the data come from, since this information is not 

represented elsewhere in the data frame. Once the data cleaning is 

completed, we write out the data to a CSV file. We want students to get into 

the habit of writing out data they scraped so they don’t have to scrape it over 

and over again, and also so that they have a record of the data in case it 

changes or the website goes down. 

In an introductory statistics course this might be all the web scraping the 

curriculum can spare time for. At this point students are equipped with the 

skills to scrape tabular data off the web, save it as a data frame in R, and also 

to save it as a CSV file to be used later. Depending on what else the course 

covers, they can then visualize or summarize this data, or build models with it. 

3.2 Level 2: Writing functions 

In an introductory data science course where foundational programming skills 

like writing functions might be a learning goal, we can use this web scraping 

exercise to motivate the need for functionalizing code and to demonstrate how 

to write functions. The code developed in the previous section can be placed 

in a function that takes the URL of the page as an input, and then easily 

applied to URLs for contributions from other years. Pseudocode for such a 

function is given below.  

scrape_pac <- function(url){ 

# scrape data from the given url 

# clean the scraped data 

# return resulting data frame 

} 

Using data scraped from a few years with this function, students can do 

analyses where they compare contributions from certain countries or 

companies between different years. 

3.3 Level 3: Iteration 
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Teaching functions to facilitate repeating the web scraping task across 

multiple years opens the door for introducing the idea of iteration to scrape 

data from all available years. Certainly this can be done by running the 

function above twelve times (for the twelve years worth of data on 

OpenSecrets) but this is neither satisfying, nor recommended. There are two 

entirely valid computational approaches for automating this task: one is using 

for loops and the other is using functional programming to map the function 

the students have already developed over a list of all URLs to be scraped. In 

our courses we choose to present the latter approach since it is made easier 

using the purrr package, which is also part of the tidyverse (Henry 

and Wickham 2020). The map_dfr() function from this package is a great fit 

for this task since it maps a function over a list of elements, and saves the 

result as a data frame.  

pac_all <- map_dfr(urls, scrape_pac)  

The function we are mapping is the scrape_pac() function we developed 

earlier, and the list of urls can be constructed using the fact that the URL for 

each year starts with the same text string, and then has the year appended at 

the end. 

root <- "https://www.opensecrets.org/political-action-

committees-pacs/ 

foreign-connected-pacs?cycle=" 

year <- seq(from = 1998, to = 2020, by = 2) URLs <- 

paste0(root, year)  

The resulting data frame, called pac_all, includes data from each year in a 

single data frame. 

This exercise is appropriate for any course that covers material presented in 

Level 2, however it should be noted that introducing iteration and basic 

functional programming will require additional time. We usually devote at least 

one lecture to introducing these concepts as well as additional readings and 
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an assignment that has them repeat a similar task on a different webpage to 

give the students an opportunity to practice. 

3.4 Level 4: Data cleaning and visualization 

Finally students can analyze all foreign-connected PAC contribution data. 

Figure 5 presents the result of one such analysis where we explore the 

contributions from PACs connected to the United Kingdom to the Democratic 

and Republican parties over time. 

Creating such a figure requires a series of data manipulation steps, 

e.g. filtering for PACs from the UK, summarizing yearly total contributions, 

reshaping the data from wide to long format, prior to creating the visualization. 

Most importantly, it communicates to students that acquiring web scraping 

skills can open doors to data insights that would otherwise be impossible or 

incredibly tedious to complete. While this exercise is presented as Level 4, it 

does not actually require a higher skill. In courses where Levels 2 or 3 may 

not fit in the curriculum, instructors can scrape the full dataset and give it to 

their students so that they can work on the visualization task even if they don’t 

go through the entire data scraping cycle themselves. 

4 Challenges 

There are four main challenges in teaching web scraping. 

The first challenge with teaching web scraping in the classroom is the difficulty 

of reproducibility. There are two main reasons for this. First, the data is not 

static, so even if you use the same code to scrape the data at a later time, you 

will get different results if the source data on the website you are scraping has 

been updated. Consider scraping data on rental houses in your local region 

and quantifying the relationship between size and price. Then consider 

repeating this task a month later. Your results will certainly change with data 

on new houses going on the rental market, and you may not be able to 

observe certain characteristics you observed before with new data 

(e.g. outliers). If the goal later in time is to explore the same data as earlier, 

this challenge can be overcome by saving the original website source and 
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not-rescraping at a later time. Depending on the complexity of the web 

scraping task this can be as simple as saving the HTML source read into R as 

an RDS file, or it can be much more challenging. It also requires a manual 

step of remembering to save this result, which can be a challenge for students 

new to web scraping. However often times this challenge in itself can present 

an opportunity to discuss the dynamic nature of data, which can bring a fresh 

perspective to how students think about data. 

Another reason for the lack of reproducibility is that websites change their 

structure over time, and code that once worked to scrape a website might no 

longer work. There is no quick fix for overcoming this challenge, but it is likely 

that the updates to the code that need to be made to adapt to the new website 

structure will not be as challenging a task as writing web scraping code from 

scratch. We suggest that instructors communicate these challenges around 

reproducibility early on, as opposed to waiting for their students to come upon 

them and get frustrated. 

A second challenge is handling of missing data. Since missing data is a 

common challenge for anyone working with data, many statistical methods 

and algorithms have been developed to enable estimation in the presence of 

missing data. However, in the case of web scraping, the challenge with 

missing data is not necessarily an estimation problem but instead a data 

retrieval problem. To distinguish the two, we will call the latter a missing node 

problem. Consider a Craigslist page with 10 rental homes. We can scrape 

information from this page on the characteristics of each house, such as 

number of bedrooms, number of bathrooms, and square footage. These three 

characteristics are represented next to each other on the website. Suppose 

that we are using a method for web scraping that retrieves information on 

each of these variables individually and stores them as vectors. If we have all 

three pieces of information on all 10 houses on the page, we would end up 

with three vectors (one for each variable), each of length 10 (one element for 

each house). We can then column bind these vectors together to make a data 

frame of 10 rows and 3 columns to be used in our analysis. However, 

assuming that all the houses would have information on all three 
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characteristics is wishful thinking, especially on a website like Craigslist where 

the information on each house is manually entered by the person posting the 

rental listing. Suppose square footage information is missing for one of the 

houses. Then, the vector with the square footage information would only have 

9 elements, rather than having ten elements with one of them being NA. It 

would be impossible to know where the NA value in the vector is without doing 

additional manual work. In addition, it would not be possible to combine the 

three vectors with lengths of 10, 10, and 9. We believe that, the best approach 

is to avoid using web pages that are likely to have missing nodes in the 

introductory classroom. Not only retrieval of the missing nodes would be hard 

but also students are less likely to be equipped to handle missing data. Note 

that web pages have nested structures as previously shown in Figure 3. Even 

though bedroom, bathroom, and square footage all have their unique nodes, 

they also have a higher node that combines the three. For more advanced 

courses, missing nodes can be retrieved by scraping a node in the higher 

nested structure and then by using string manipulation. 

A third challenge is the need for instructors to be aware that they have no 

control of the web. Thus it is important to note potential issues related to 

connectivity and content. For example, in one of our classes, students were 

assigned to scrape data on college basketball matches from a specific 

website as part of their homework. However, while students were working on 

the homework, the server of the website went down, and it was impossible for 

the students to complete the homework. We had to push the homework 

deadline until after the website was up and running again, but this was a less 

than ideal solution. Thus we recommend that instructors be ready to provide 

alternatives or extensions in such cases. One potential remedy is to save the 

source code of the website and host it on a local web server that the instructor 

has control over. However this task may not be trivial if the website is 

complex, and there may also be legal considerations around re-hosting 

source code, even for educational purposes. 

Even though instructors do not have control over connectivity on the server 

side, they do have control over connectivity on the user side, and they should 

Acc
ep

te
d 

M
an

us
cr

ipt



be mindful of it. Each time a student is scraping off the web, as a user they 

send a request to the server to get information over the web page. If they are 

working with an iterative case such as in the level 3 of the aforementioned 

example, then each student would be sending multiple requests for multiple 

web pages. If this is happening in a classroom setting, multiple students 

would be sending multiple requests to the same server. Web servers only 

allow certain number of requests per second and thus the server will either 

ban requests or slow down the speed of information retrieval. Even though 

web scraping can provide large amounts of data for the data science 

classroom, the speed will matter and differ. 

An important step is to consider the amount that is being scraped. Does the 

whole set of data really need to be scraped to achieve the learning goals of 

the class? For instance, Internet Movie Database (IMDB) has 11,905 (as of 

November 26, 2019) featured movie titles from 2018 and information on 

rating, number of votes, domestic gross and many other features of the 

movies are provided (IMDB 2019). Each web page has 50 movies and if one 

were to scrape all the movies the code has to iterate over 239 web pages. If 

the goal is to teach how to scrape and iterate over web pages, the goal can 

easily be achieved by iterating over a much smaller number of web pages. 

For example, if students can scrape data from the first three web pages, they 

can scrape from 239 web pages assuming that page structures are similar. 

They just need to be aware that the larger task will take a longer time. Another 

approach to lowering the amount of data scraped can also be taking a sample 

either in random sample format or in random clusters where each web page 

would be a cluster and this would be a computationally easier solution and 

statistically a more interesting one. 

Finally, a fourth challenge is that instructors do not have control over the 

content of the web. We can divide content into two as data maintained by staff 

affiliated with the website vs. data input by users. Consider IMDB where 

information about movies are retrieved from a database that is maintained by 

IMDB itself. Even though users can add movie titles and information related to 

a movie, IMDB staff spend time to review the user submissions. Now consider 
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Craigslist, a website where anyone can submit anything, and there is minimal 

monitoring of data entry. For instance, you may find a house with 1000 

bedrooms and that is only 2 square feet. Such data entry problems are not 

limited to web scraping and can be faced even with traditional data collection 

tools such as pen and paper. Even though we list this as a challenge, we also 

believe this can be considered an opportunity for data cleaning. Instructors 

need to take their students’ level into account to decide whether the students 

should be faced with this challenge or not. If the time is limited and the goal is 

to complete a specific analysis, tasks where web scraping is done on pages 

like IMDB may be more appropriate. However, if the goal is data cleaning, 

exercises like scraping data off of Craigslist would turn this challenge into an 

opportunity. Data that requires a lot of cleaning may also be considered as 

outside of class activity at more advanced levels. 

5 Opportunities 

The biggest opportunity web scraping brings to the classroom is the data 

itself. The web offers data that is current and interesting. In the past, 

traditional statistics courses have been mainly taught with toy datasets that 

are clean and have few variables, often the only variables needed for a 

specific analysis. More recently, many statistics courses have adopted the 

use of real and current data, even if the data sets may have been tamed 

slightly to help demonstrate particular models or methods. An instructor with 

web scraping skills can incorporate truly timely data into their curriculum, 

which can enrich the data repository of any course. And since web data often 

come with the story of why the data were collected in the first place, 

instructors can share these stories with the students to provide motivation 

(Grimshaw 2015). 

Without web scraping skills, students are limited to hand scraping or to 

datasets that already come in as CSV or Excel files. In some situations, such 

files might contain exactly the data students want. But in many situations, 

being limited to data that is already presented in a structured format can limit 

students’ options, and their data analysis projects might be driven by the 
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availability of structured data instead of what they really want to investigate. 

Even though the examples we have provided in this paper target the learner, 

web scraping is also an important tool for the instructor, who is essentially the 

lead learner. 

Further to content of the data, size, shape, and the format of the data are 

another opportunity. As suggested by Horton et al. (2015), integration of 

experiences with large, complex, and messy datasets that don’t come in a 

rectangular data matrix is an important consideration for a statistics 

curriculum, and web scraping can provide an opportunity to do all of this. 

While the Open Secrets example we provided earlier used data that came in a 

tabular format, it is very common for a web scraping exercise to feature 

harvesting data that is scattered around a page and cannot be extracted as a 

table. Regardless of whether the data comes in a tabular format or not, web 

data often requires post-processing, e.g. text parsing, data cleaning, 

reshaping, etc. to prepare it for statistical analysis. It also exposes students to 

file formats beyond the standard CSV and Excel files (e.g. HTML, JSON, and 

XML) as well as to the idea of “text as data” which can pave the way to further 

data science topics like sentiment analysis. For example, in one of our 

classes, for their final project, a student had scraped song lyrics of their 

favorite band and had done a sentiment analysis of the song lyrics. 

Another important opportunity that web scraping brings to the data science 

classroom is blending computing and statistics topics through problem 

solving, rather than using hypothetical scenarios. Consider level 2 of the 

example provided above, where we introduce the concept of writing functions. 

In this situation, the function solves a real problem (getting data off a webpage 

given its URL) as opposed to a toy one (e.g. adding one to its argument). Two 

additional computing topics that often come up in web scraping are iteration, 

as seen in level 3 of the example, and string manipulation. 

Finally, for those of us who teach with R Markdown files, web scraping 

provides an opportunity to introduce R scripts with a clear motivation for not 
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using R Markdown. Code for web scraping functions and saving the scraped 

data as CSV files go into R scripts – this code is run only once. Then, the data 

analysis (visualizations, summarizations, modeling, etc.) is completed in R 

Markdown documents that begin with reading data from the CSV files they 

created – this code gets re-run every time the R Markdown document is knit. 

This process presents two opportunities: (1) discussing valid reasons for not 

wanting to run certain types of code each time we knit an R Markdown 

document (we don’t want to keep hitting the web servers of the page we are 

scraping), and (2) introducing students to file formats other than R Markdown 

for writing reproducible code, which leads the way to teaching good workflow 

practices. 

Last but not least, an important aspect of teaching web scraping is the 

discussion of ethics that it brings to the classroom. Awareness of ethical 

issues is one of the nine goals in the latest GAISE College report (2016) and 

others have been thinking about inclusion of ethics in the statistics and data 

science curriculum as well (Baumer et al. 2020). A common misconception 

surrounding using web data is that if the data is publicly available, it can be 

scraped. Our approach to handling this misconception in the classroom is 

three-fold. When scraping data, one should take into account whether the 

server allows for bots to access the web page. In the aforementioned example 

this was achieved by using the paths_allowed() function from the robotstxt 

package. 

The second point to consider is privacy and consent when the data is about 

human subjects. A popular web scraping controversy was about data scraped 

from OkCupid, an online dating website, by a group of scientists, and provided 

on PyschNet, an open science community. The data included usernames and 

potentially sensitive information such as drug use, political affiliation, and 

sexuality (Woollacott 2016). Considering that an important portion of data on 

the web comes from users, we suggest that instructors make students aware 

of the distinction of human subjects and non-human subjects and possibly 

introduce them to Institutional Review Boards at their institutions briefly, if not 

already done so. 
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The third point we also consider is the legality of web scraping. The laws 

regarding web scraping are not yet set in stone and the law arena about web 

scraping remains unclear (Zamora 2019). There are two popular cases that 

instructors can bring up as examples in the classroom. The first is a dispute 

between EBay and Bidder’s Edge in 2000 when a court decided to ban Bidder

’s Edge scraping data from EBay. The second is a more recent case of a 

dispute between LinkedIn and HiQ where the court decided that scraping 

publicly available information from LinkedIn is not same as hacking, however 

there may be copyright infringement (Robertson 2019). As law is catching up 

with data practices, the way we teach web scraping in the future will be 

shaped by legal practices. It is important for instructors to make students 

aware that having technical skills to scrape data does not necessarily mean 

they should or they are allowed to scrape. This distinction is really important. 

6 Discussion 

We cannot envision a data science curriculum without web scraping. In this 

paper we attempted to communicate this vision by first placing web scraping 

within the statistics and data science education landscape. Then, we 

presented a web scraping activity at varying levels of difficulty for the data 

science classroom. Based on our teaching experience, we provided potential 

challenges of teaching web scraping and how to overcome them. We also 

described in detail what opportunities web scraping brings to the data science 

classroom. When the challenges are overcome, the opportunities provide 

meaningful learning experiences for the learner. We encourage statistics and 

data science instructors to teach web scraping. 

Over the last five years, we have taught web scraping as part of many 

courses and in different institutions including, small liberal arts colleges, large 

private and public research universities. On 14-15 week semester systems, at 

the undergraduate level, we have taught web scraping in introductory data 

science, data analytics, and statistics courses (algebra-based) as well as in 

secondary (algebra-based) linear models courses. In 10-11 week quarter 

systems, we were unable to cover web scraping in (calculus-based) 
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introductory probability and statistics courses, however we were able to cover 

it in introductory data science courses. We have experimented with teaching 

web scraping towards the end of the term (in the last 3-4 weeks), after 

students have gained a good amount of computational experience, as well as 

mid-semester (around week 5), immediately after data visualization and 

wrangling units, so that students could use their newly acquired skills in 

putting together their final project proposals. 

In this paper, we focused on scraping data from its source code. In addition to 

source code, some websites offer application programming interfaces (APIs) 

through which data can be accessed. One option for introducing harvesting 

data from the web via an API is to use an R package that provides a set of 

functions to communicate with that API, e.g. rtweet for accessing Twitter’s 

REST and stream APIs (Kearney 2019), ZillowR for accessing Zillow’s Real 

Estate and Mortgage Data API (Brantley 2016), and genius for accessing 

song lyrics via the Genius API (Parry 2019). Working with web APIs using 

packages like these can be introduced at any level as the package functions 

simplify the tasks to be no more complicated than working with the rvest 

package for scraping HTML data. For a more thorough treatment of working 

with web APIs, we would recommend teaching this process after web 

scraping. For example, OpenSecrets has an API so one could extend the 

example provided above to replicate the same analysis by fetching the data 

via their API. This is not a computationally much more complicated task, 

however it does require introducing the concept of hierarchical data and new 

data types – most likely JSON or XML. There are numerous R packages for 

parsing such data and flattening them into a rectangular data frames, which 

can then be used as starting point for an analysis like the one we exemplified 

above. Having worked with web data previously will help students as they 

learn these new concepts and tools, and hence we recommend introducing 

working with web APIs either in upper-level courses or earlier computational 

courses where learning goals include working with hierarchical data. 

As demonstrated in Section 3, the specific web scraping topics we cover 

depend on the level of the course. Table 1 summarizes how we sort these 
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topics into courses at various levels and also into computational and statistical 

categories. From a computing perspective, with the help of SelectorGadget, at 

the most basic level web scraping can be taught as soon as students are able 

to use R functions from multiple packages. However, we believe that web 

scraping activities are more effective when students gain some maturity 

working with data so that they have enough statistical knowledge to make 

meaning of the data that they scrape. For instructors who are new to web 

scraping, in addition to the elementary topics that we have listed for students, 

we also recommend a basic understanding of HTML and CSS as we have 

outlined in Section 2.1. Instructors who are novice web scrapers should avoid 

teaching on the spot and fully write the code for scraping activity before 

teaching students. 

Even though we do not have experience teaching the topic at the graduate 

level or advanced undergraduate levels, we believe that at these levels web 

scraping will also provide an opportunity to expose students to working with 

web APIs and hierarchical data retrieved from them (JSON and XML files) as 

well as further details of HTML and CSS. 

For instructors who are interested in adopting web scraping activities in their 

teaching, we provide the following set of questions as a starting point to 

consider when deciding on which website to scrape from: 

 Is the data from human subjects? If yes, is it ethical to scrape the data? 

 Does the website provide an API? 

 Does the website allow web scraping? 

 Are the data provided in an HTML table? 

 Are the CSS Selectors easy to select with SelectorGadget? 

 Is there non-numeric data? If yes, how easy is it to manipulate it? 

 Would the process of scraping involve iteration over multiple pages? If 

yes, how much data are you planning to scrape, all or a sample? 

We presented a brief introduction to web scraping using R for HTML parsing. 

However, the world of web scraping is richer than what we could provide here 
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as examples. For example, many of the pedagogical opportunities and 

challenges we discussed would also apply to doing web scraping in Python, 

using a package like Beautiful Soup (Richardson 2007). Additionally, the 

example we presented used a specific combination of technologies – a 

Chrome browser with the SelectorGadget extension, and the rvest and 

tidyverse packages. While we believe that this set of tools are the best choice 

for web scraping in R, from both pedagogical and technical perspectives, 

there are many other combinations of tools one could use to accomplish the 

same results in R. The tools for web scraping get richer every day as the need 

for harvesting data off the web efficiently and effectively grows, but the 

pedagogical considerations presented in this paper as well as the technical 

tooling should stay relevant for the foreseeable future. 
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Fig. 1 HTML document example 
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Fig. 2 HTML document with CSS example 
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Fig. 3 Partial HTML tree of HTML and CSS example 
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Fig. 4 Identifying the CSS selector for the table of contributions using the 

SelectorGadget. Retireved on April 30, 2020. 
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Fig. 5 Example analysis: visualization of contributions from PACs connected 

to the UK to the Democratic and Republican parties over time. 
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Table 1 An overview of statistics and computing topics in the web scraping 

classroom 

 Computational Topics and Tools  

Statistical Topics and 

Tools 

Elementary  

Using functions from different 

packages Data Visualization  

 SelectorGadget  Exploratory Data Analysis  

Intermediat

e Writing Functions  Sampling  

 Iteration  Statistical Inference  

 String manipulation  Statistical Modeling  

 Text analysis   

Advanced  APIs  Handling Missing Data  

 HTML and CSS   

 Hierarchical data (JSON, XML)   

   

Notes 

1 The GitHub repository can be found at {https://github.com/mdogucu/web-

scrape} 

2 The RStudio Cloud project can be found at 

{https://rstudio.cloud/project/797118}. 
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